AD-A243
Hlllll!!llllll!llllllIIIIIHIIIMIIHIIM'

TECHNICAL SUPPORT TASK REPORT
FOR THE MODERNIZATION
OF DEFENSE LOGISTICS
STANDARD SYSTEMS

Volume II: Logistics Gateway Node Prototype

Construction and Operation

ELECTE §
DECO 41991 B

Report DL702R1

April 1991

William T. James, I1I

With
Christo G. Andonyadis
John S. Doby
John Lycas

4 Tl 4.cument has ceen approved
for putiic telerse and saie; its
distribution 13 unhmited.

S

Prepared pursuant to Department of Defense Contract MDA903-90-C-0006.
The views expressed here are thoes of the Logistics Management Institute at
the time of issue but not necessarily those of the Department of Defense.
Permission to quote or reproduce any part - except for Government
purposes — must be obtained from the Logistics Management Institute.

LOGISTICS MANAGEMENT INSTITUTE
6400 Goldsboro Road
Bethesda, Maryland 20817-5886

91-14451
LT 91 10 29

REPORT DOCUMENTATION PAGE B A 188

Public reporting burden for this collection of information is estimated to average 1 hour per response, induding the time for reviewing i cth ching existing dsta sources
- m.umlmlﬁmmmm and reviewing the collection of information. Send comments regarding Mwmmuwmomded

information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1991 Final
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Technical Support Task Report for the Moderization of Defense Logistics Standard Systems — C MDAS03-90-C-0006
Volume II: Logistics Gateway Node Prototype Construction and Operation PE 0902198D

6. AUTHOR(S)
William T. James, III with Christo G. Andonyadis, John S. Doby, John Lycas

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Logistics Management Institute REPORT NUMBER
6400 Goldsboro Road LMI-DL702R1

Bethesda, MD 20817-5886

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Defense Logistics Standard Systems Division AGENCY REPORT NUMBER
6301 Little River Turnpike, Suite 210
Alexandria, VA 22312

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

A: Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This volume details the construction and operation of the Prototype Logistics Gateway Node (LGN) developed for the support task. The
document is written from the perspective of software performance and is intended to assist in understanding and implementing the technical
specification developed for the LGN.

14. SUBJECT TERMS 15. NUMBER OF PAGES
MODELS, EDI Translation, Logistics Gatewsy Node, LGN, CLGN, Prototype, MODELS Feasibility Test 170
16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT UL
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-18
2990

PREFACE

This technical report, in three volumes, is the final report covering more than
2 years of technical activity supporting the Modernization of Defense Logistics
Standard Systems (MODELS) project. The supporting activities included developing
translation tables and the table-driven software for converting current fixed-length
logistics data formats into new variable-length transaction equivalents. They also
included designing and testing prototype hardware and software platforms that
support transaction interchange between logistics sites.

This volume, Logistics Gateway Node Prototype Construction and Operation, is
VolumeII of the series. It details the construction and operation of the prototype
logistics gateway nodes (LGNs) developed for the support task. The document is
written from the perspective of software performance. It is provided to assist in
understanding and implementing the technical specification developed for the LGN.

Volume I, Prototype Test Report, is an overview describing the task’s purpose,
results, conclusions, and recommendations from the viewpoint of four major support
activities:

® Prototype LGN construction and testing

® Interconnection and control of telecommunicating LGNs

® Electronic data interchange transaction translation and testing
® Network performance simulation and cost modeling.

VolumeIll, Logistics Gateway Node Technical Specification, presents the
performance requirements for an LGN and central LGN (CLGN) interconnected
within a homogeneous network of LGNs under CLGN control. The specification’s
purpose is to describe the technical capabilities necessary for a network of deployed
LGNs to meet the functional capability called for in OSD directives.

o l.)uh\)../
[

p———

Dist

/
/
. B i
iii Lo .

d

L

—_———
Ava izbility (oclog

Avq\i! 3ca/or
Spacial

CONTENTS

Page

S =) 2V iii
Listof Tablescccciuiiiinnnereeeeeeenrencnonnnennnnns ix
Listof Figurescoviiiiiiiiiniiinieereroteeeoneensnsnennn. xi
Chapterl. Backgroundccciiiiiiiinrresecenccnnaocnnns 1- 1
Chapter 2. OperatingReviewccciiiiiiiinnnnenncennn. 2-1
Chapter 3. Overview of Requirementscoeeveeveniennnn. 3-1
Local Connectivityccciiiiiiiienreionnnnnecanns 3-1

Wide Area Network Connectivitycccoveeeiiennnns 3- 2

CLGN andLocal LGNSccciiiivirnecncsccsnconcns 3-2
Transaction Processingcciiiiiineiiiiiencnnes 3- 2
Throughputcciiiiiiiiiiiiiiiiiiieernnneeeans 3- 3

Local and Remote Operations and Maintenance 3- 4
Logging Activity, feveenessonnsnnnaas 3- 4
Chapter 4. Basic Design Principles feeeeresenessanaanns 4- 1
Hardware/Software Platformccceiveneee... 4- 1
ModularDesigncceiiitereececeerecscncannnencnes 4- 2
Parameterized Subsystem Start-upc0iiiinnen 4- 5
Chapter 5. Processing Environmentcc0ivveeen.. 5- 1
Chapter 6. Naming Conventionscovoiviieeeceennnnnanaas 6-1
Configuration Parametersccccvieeennnvecenn. 6-1
Program Namesccooitherreinernieecinnnrannnes 6-1
MeSSAZeSuicviiiiiiiratiiianioctttrstestttoceaccanans 6- 2
C-ProgramIdentifierscciiiiiiiiinnnnnnnnnns 6- 2
C-Program Named Constantscci0eveeennnn.. 6- 2
C-Application Functionscccciviiiiiennnnennnn. 6- 4

Pro InformationFilescciviiiiiiinnnn.. 6- 4
DESQview Mailboxesccoiiiiiieninneennnenennn 6- 4
Chapter 7. Processing Subsystems and Modules 7- 1
The Three States of Module Processing 7- 1
Common Module Proceduresccceeeveeeenennnnn. 7- 2

CONTENTS (Continued)

Page

How a DESQview Process is Invoked
inthe Prototype LGNccoiiiiiiiiiiiiiiiinnnan.. 7- 6
Chapter 8. Local Interface Subsystemc...o0o... 8- 1
Local Interface Modulecccciiiiiiiiiiiinna.. 8- 1
Chapter 9. WAN Interface Subsystemccoviinnan.. 9-1
X25Modulecciiiiiiiiiiiiiiiiiiiteiie et 9-1
CLGNPollingModulecciiiiiiieiiiinnnnennnnnn. 9-17
Chapter 10. Transaction Processing Subsystem 10- 1
LAN DequeuingModuleccciiiiiiiennnnnnnn.. 10- 1
DLSS-to-EDI Translation Module 10- 6
WAN QueuingModulecccoiiiiLL, 10-24
WAN DequeuingModulec.oiiiiinnnennnnn... - 10-27
EDI-to-DLSS TranslationModule 10-30
LANDequUeuingcccceeveeeeercrecocsanaacnncenaanss 10-38
Chapter 11. OperationsSubsystemcccoviiinneeeeennnnn. 11- 1
SystemBootModuleccciiiiiiiiiiiiiiiieia.. 11- 1
Suspend/Restart Moduleccciiiiiinnnnn.. 11- 8
System MonitorModuleccciiiiiiiiiiiiinnnn.. 11-10
System UtilitiesModuleccccviieivriiininnn. 11-13
Remote Control Facilityccciiieiiiiiiinininnn.. 11-15
Chapter 12. Logging and Logistics Data Base Subsystem 12- 1
LOggINg . .civiiiiiiiiiniiiiieienereeneeeeeesonnaaeennnns 12- 1
DataBaseModulecccoiiiiiiiiiiiiininnennnnns 12- 1
Chapter 13. LGN Maintenancecccvvueeeiennneecennnnnn 13- 1
SystemBoot Menucciiiiiiiienieneeencernnans 13- 1
General Procedure for Remote Modeccvvvtnn.. 13- 2
Translation Table Updatescccovviiennnnnn.. 13- 3
Module Software Updatesccovvviiiiniinnnnnnsn 13- 3
Module Configuration File Updatesc........ 13- 4
Download Window File Updatesccevvnvnnnn. 13- 4
Remote Commandscciiiiiiiniiiinnnnneennnen 13- 5
FileRequestscciiiiiiiiiiiiieiinnnenennnnnnn. 13- 6
LGN Resetoiiiiiiiiiiiiiiiieiiiitettneiennnnnnnnnns 13- 6
LGN Shutdownccciiiiiiiiiiiiniiiinnnnnnnnes 13- 6
Manual LGN Bootciiiiiiiiiiiiiiiiiiiennnnnnes 13- 7

CONTENTS (Continued)

Page

GlOSSABIY . iiviviiiiit ittt etttieeteneetraaaret e aaaae s Gloss. 1-3
Appendix A. Prototype Logistics Gateway Node Disk Directories ... A-1-A-12
Appendix B. Translator System Functions B-1-B- 5

vii

10-1.
10-2.
10-3.
10-4.
11-1.
13-1.
13-2.

TABLES

OperationsTasksccovvevvevinnn...
Maintenance Tasksccoven....
LGN Development Software
Module Mnemonicsccvevuvnvnn.n..
Hungarian Notation Type Prefixzes
Additional Hungarian Type Prefixes
Local Interface Start-up Parameters
WAN Interface Boot Parameters

MODELS Network Protocol Summary
Data Typesin EVALDLSS Data Base
P-Code InstructionSetc..c.v......
WAN Queuing Start-up Parameters
WAN Dequeuing Start-up Parameters
System Boot Messagesccc0enenn.n.
SB Module Optionscccvuvvnnnn..

Frequently Changed Configuration Parameters

ix

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

............

i
1
[

»
W & W W W = NN o»m

10-13
10-15
10-25
10-29
11- 6
13- 2
13- 5

)
[}
[y

3
O S A o S N L e Y o

FIGURES

Overall LGN InformationFlowccciviviennnn..

Information Flow From Host Through LGN

Information Flow From WAN Through LGN

Module Initialization State Processing

Module Operational State Processing

Module Shutdown State Processingco.te.

PIF Structure

oooooooooooooooooooooooooooooooo

Local Interface Subsystemccccvviiiieennenss

Download Window Determination Logic

WAN InterfaceSubsystemccoveviiiiieennn.

WAN Interface Module Operational State Processing
for Direct-Connect LGN Ceeereeeceesacnantacarane

WAN Interface Global Information Structure
Dial _ Info Global Structureccceevvnuneen.
Inter-LGN Message Structureccevieveeenennss

Transaction Processing Subsystem

LAN Dequeuing Module

ooooooooooooooooooooooooooooooo

Module for DLSS-to-EDI Translationcco00ven.
Table Interaction for DLSS-to-EDI Translation
EVALDLSS Symbol TableEntryc.ccevvveennnnnn.

DLSS2EDI Table Entry

oooooooooooooooooooooooooooooooo

n
T T - S N S

9-13
9-13
9-14
10- 2
10- 3
10- 7
10-10
10-12
10-13

10- 7.
10- 8.
10- 9.
10-10.
10-11.
10-12,
10-13.
10-14.
11- 1.
11- 2.

FIGURES (Continued)

System Table Entry an
Translog Grammar ..

WAN Queuing Module

d Related Structures

oooooooooooooooooooooooooooooooooo

WAN DequeuingModuleccoevivvveiiiennnnn

Module for EDI-to-DLSS Translation

EDISymbol TableEntrycccovviieeiiiinan...

EDI2DLSS TableEntitiescccvviieiiieiineererennns

Table Interaction for EDI-to-DLSS Translation

Operations Subsystem
Boot __Entry Process

ooooooooooooooooooooooooooooooooo

xii

]
]
®

10-17
10-20
10-24
10-28
10-31
10-34
10-35
10-36
11- 2
11- 3

CHAPTER1
BACKGROUND

The mission of a logistics gateway node (LGN) is to facilitate the two-way
translation of Defense Logistics Standard Systems (DLSS) and electronic data
interchange (EDI) transactions at a particular site; each LGN serves as a
communications interface, or gateway, between the local host computer and an
X.25 wide area network (WAN), to which are attached the other LGNSs.

During Phase I of the Modernization of Defense Logistics Standard Systems
(MODELS) test, the LGN was strictly a translator invoked manually from the
keyboard each time a translation was desired. In Phase II, the LGN ran unattended,
except to simulate manually the download of a file from a host. Dial-up,
modem-to-modem communication was added. The various tasks in the Phase II
model ran serially. The Phase Il prototype LGN also operates unattended and
communicates with a local host and the WAN but is different in that it incorporates
multitasking, enabling its component processes to run in parallel.

This volume describes the MODELS Phase III prototype LGN in considerable
depth, as a supplement to another Logistics Management Institute (LMI) volume of
this report, the Logistics Gateway Node Technical Specification.

1-1

CHAPTER 2
OPERATING REVIEW

The prototype LGN is a front-end processor for a host computer that transmits
and receives DLSS transactions. It functions as an interface point between its host
and an X.25 WAN. A specially configured central LGN (CLGN), eventually to be
sited at the Defense Automatic Addressing System (DAAS) Office (DAASO), serves
as an intermediate processing point for transactions that need to go through DAAS.
During Phase III, a prototype CLGN was configured at LMI.

The path taken by a file of transactions via the LGN is as follows: the file is
downloaded from the host, goes through translation at the LGN, is sent over the
WAN, and arrives at the destination LGN, where it is retranslated. The next, and
final, logical step of uploading to the receiving host was not implemented in the
prototype LGN, as a result of restrictions on accessing the host computers at the test
sites. For those transactions requiring processing by DAAS, two transmissions — an
LGN-to-CLGN transmission, followed by a CLGN-to-LGN one — take place. For
most of the test, all transactions were routed to the CLGN. Figure 2-1 depicts the
overall information flow at this abstract level.

Host

FIG. 2-1. OVERALL LGN INFORMATION FLOW

2-1

The rest of this chapter describes an end-to-end network transmission as
implemented in Phase ITI. Although the flow of transactions through the system is
described as though it were serial, at any time there may be simultaneous
information flow in various directions and processing stages within an LGN.

Transaction flow begins when the LGN receives a file of outbound DLSS
transactions from its host through a local communications interface tailored to the
host. Figure 2-2 is a high-level view of the flow of information from the host through
the LGN to the WAN. Connection to the host may be constant, or it may be initiated
on a periodic basis by the LGN. LGN start-up parameters determine the frequency
and, to some extent, the nature of the connection to and downloading of transactions
from the host. The software for connecting and downloading is selected and/or
customized to work with the host’s hardware, software, and communications
environment.

Upon successfully downloading a file of DLSS transactions from the host, the
LGN assigns a unique 11-character! name to the file; an 8-character timestamp that
will stay with the file through all phases of its processing (including retranslation at
the receiving LGN), and a 3-character extension indicating the type of file (e.g., raw
DLSS, filtered DLSS, error file). At each step of LGN processing, any intermediate or
result files produced are assigned a name consisting of the file’s 8-character
timestamp plus a specific 3-character extension.

The LGN filters downloaded transactions to select only those appropriate to the
test. The filtering mechanism is sufficiently flexible to handle an expanding set of
filtering criteria. Each transaction that passes the filter is assigned a unique control
number2 for tracking and for functional source-to-destination verification.
Transactions not passing the filter are written to a temporary log that is overwritten
each time a batch of transactions is filtered, in order to conserve hard disk space (the
prototype LGN does not use erasable media such as Write-Once-Read-Many (WORM)
optical disks). In actual operation, all error log entries would be kept until no longer
needed. Moreover, transactions from the host not passing the filter would be sent
back to the host as well, where they would be corrected or discarded.

1Eleven-character file names are the maximum allowed in MS-DOS.

2The control number is a concatenation of the LGN’s unique identifier (a 3-character mnemonic;
e.g., DCS) with a hyphen and a 10-digit sequence number (e.g., DCS-1000000001), identifying any
transaction in the system uniquely.

2-2

LGN

Host
Local interface

)

LAN dequeuing
and filter

Y

DLSS-to-EDI
translation

WAN gueuing

Y

WAN interface

Note: LAN = |ocal area network.

FIG. 2-2. INFORMATION FLOW FROM HOST THROUGH LGN

Using table-driven logic, the LGN translates the DLSS transactions into EDI
transactions and packages them for transmission on an X.25 WAN. Currently, all
transactions are sent to the CLGN, and an intermittent routing table based on LGN
source is employed at the CLGN. In this simple prototype implementation, each LGN
name is paired with another LGN name; thus, the source LGN for a file of
transactions uniquely determines the file’s ultimate destination. This rudimentary
routing logic is used primarily to “complete the circuit” from the source LGN through
the CLGN to the destination LGN. In contrast, an operational or production system'’s

2-3

routing logic would depend on the type of each transaction and on address-table
entries based on a more complex set of system-based rules.

Once translated to EDI, the transaction file is compressed by the PKware data
compression software (PKARC) and queued for transmission across the WAN. The
compressed file is assigned a unique 11-character name consisting of an 8-character
timestamp and the 3-letter LGN identifier. Embedded within the compressed file is
the original file name, so its timestamp (assigned immediately after downloading
from the host) is retained. As soon as the transaction file is bundled (and the WAN
line is free), the LGN sends the compressed EDI transactions file, using an enhanced
XMODEM file transfer over an X.25 protocol. The LGN looks up the destination
routing identifier code (called the TORIC) in a file that maps the TORIC to the
network address of the LGN serving the TORIC. Although in the prototype system
all transactions go to the CLGN, a generalized mapping file not tailored specifically
to the CLGN is used. If the call or transmission fails, it will be retried at prespecified
intervals for a prespecified number of tries. The progress at each step of the X.25
session, including file transfer statistics, is logged either as an event or as an error,
depending on its success.

The flow of information from the WAN to the receiving LGN, as implemented in
the prototype system, is shown in Figure 2-3. As with sending files, the receiving
LGN logs each step of the file reception, including the network address of the source
LGN (this is a dial-up node if the source LGN is not directly connected to the WAN),
the name of the file received, the elapsed file transfer time, and a breakdown of the
X.25 packets exchanged. The source LGN name is derived from the file name, whose
last three letters are the source LGN’s unique mnemonic.3

Once the EDI file is received, the LGN expands the compressed file and
translates each EDI transaction contained within it into the DLSS format. The result
is a DLSSfile, an error file, and a compare file that reside on the receiving LGN. The
compare file is the result of a comparison made by the translator between the
original DLSS transactions and the output of the EDI-to-DLSS translation. Because

3During the test, the original DLSS transaction was embedded in the EDI transaction (as one or
more XXX segments), making a before-and-after comparison possible. The original transaction will
not be carried in the production system.

2-4

LGN

EDi-to-DLSS
translation

|

WAN
dequeuing

|

WAN
interface

FIG. 2-3. INFORMATION FLOW FROM WAN THROUGH LGN

of security restrictions in effect during the prototype operation, as well as other
practical considerations, the resultant DLSS file is not uploaded to the host.

At each step within the LGN, the status of processing is written to an event and
error log. There is one log per module; each log contains both event and error
messages, which are distinguishable by their formats. This arrangement allows a
file of transactions to be tracked from end to end and provides an audit trail for files,
but not at the transaction level. (Such will not be the case, of course, in a production
LGN; in it, end-to-end serialization and logging of all transactions will enable full
auditing down to the transaction level.)

Periodically, the log files are sent to the CLGN and subsequently cleared; this
operation is initiated via remote commands from the CLGN. Other ad hoc tasks
carried out remotely from the CLGN include table and file updates, file requests,
system commands (performed at the LGN), and module suspend and restart.

For the most part, the prototype CLGN,4 located at LMI, operates like any other
LGN, with these differences:

® The biggest difference is that, at the prototype CLGN (1) EDI transactions
are retranslated to DLSS; (2) the resulting DLSS transactions are translated
back to EDI, and then (3) the EDI transaction file is forwarded to its final
destination LGN.5 This process is carried out to simulate (roughly) the
retranslation of certain transactions required of a production CLGN.
Because of time restrictions on development, the prototype CLGN does not
preserve transaction control numbers during retranslation from DLSS to
EDI; rather, new control numbers are assigned to each transaction.
Likewise, the prototype CLGN does not compare incoming EDI transactions
with the retranslated EDI transactions.

® If the destination of a final EDI transaction file cannot be determined, the
file resides on the hard disk at the CLGN; in this respect, the prototype
CLGN acts as an entrepot for certain transactions.

® File names for intermediate and result files produced by the various modules
follow a slightly different naming convention to preserve the source LGN
name, which is embedded in all the CLGN intermediate and result file
names. This method for associating a source LGN with a file is a stopgap; in
the production CLGN, the unique transaction identifier and the more
complete logs must provide for much more certain tracking of any
transaction’s source LGN.

® The prototype CLGN is able to perform certain remote operations, such as
table updates, remote system commands, and module suspends and restarts,
that an ordinary LGN cannot. Furthermore, remote LGNs are restricted to
WAN communication between themselves and the CLGN, whereas the
CLGN can communicate with any other LGN. This restriction may be less
stringent in a production system: direct LGN-to-LGN communication may
be allowable when specified conditions are matched in the LGN routing
table and the destination LGN is connected directly to the WAN.

In the prototype system, one can reconfigure an LGN as a CLGN or vice versa
with a minimum of program recompiling. Some minor design changes would allow
an LGN'’s status to be switched between that of regular LGN and that of CLGN

4Actually, there are two essentially duplicate CLGNs located at LMI, to ensure a reasonable
availability over the WAN and to ensure sufficient disk space. However, from the standpoint of an
LGN, there exists only one CLGN — the one it communicates with — and thus for all practical
purposes it makes sense to refer to the CLGN as though there were only one.

5In the prototype, this step is usually bypassed for convenience. Skipping this step, however,
does not materially reduce the test’s effectiveness, since all procedures performed at the destination
LGN are performed at the prototype CLGN as well.

2-6

simply by changing one or more parameter values. An LGN can determine whether
or not it is the CLGN via a parameter read-in at LGN start up. This flexibility will
not be a factor in the production system, since the location of the CLGN will be fixed.

2.7

CHAPTER 3
OVERVIEW OF REQUIREMENTS

LOCAL CONNECTIVITY

The most difficult requirement to resolve in the LGN is connectivity to the host
system. This is particularly true in the prototype environment, since the prototype
LGN is basically “at the mercy of” the host environment. The host interfaces
encountered during the development and operation of the prototype system are

® 3270 terminal emulation

® Asynchronous terminal emulation.

The asynchronous environment consists of various terminal emulations,
depending on the host. A design goal of the prototype LGN is to insulate the
site-specific connectivity requirements from the remainder of the LGN processing as
much as possible. For the most part, this goal has been achieved, by having separate
host-specific processes that are invoked by standard LGN processes. To the extent
possible, host-specific operational considerations are table driven.

In general, the LGN periodically initiates a logical session with its host and
polls it to determine whether there are transactions to download. While the
frequency and nature of the polling vary somewhat from LGN to LGN, the following
basic steps are always taken:

® Step 1A — If the connection to the host is hard wired, establish a host
connection at LGN start up.

® Step 1B — If the connection to the host is not hard wired, establish a
temporary host connection at the beginning of each poll.

® Step 2 — By looking for a predefined file or set of files in a particular
directory (e.g., UNIX, etc.) or data set, determine whether a file exists to
download.

® Step 3 — If a target file exists, download it and pass it to the next step in the
LGN. Because of security requirements in place during the operation of the
prototype system, files on the host cannot be deleted. Therefore, logic in the

3-1

LGN minimizes but does not eliminate the chance that the same data file is
downloaded twice. This is a known limitation of the prototype LGN.

® Step 4A — If nofile exists, do nothing.

® Step 4B — If the host connection is not hard wired, disconnect from the host.
® Step 5 — Sleep until the next poll of the host.

@ Step 6 — Return to Step 1B or Step 2.

WIDE AREA NETWORK CONNECTIVITY

In the prototype system, all WAN connectivity is by way of a commercial
X.25 WAN provider. Some LGNs have a direct connection to the WAN, making them
directly addressable by the CLGN; others have a dial-up connection, in which case
they poll the CLGN periodically to receive files or remote commands addressed to
them. If an LGN is directly addressable, the sender initiates the transfer of data; for
those LGNs with a dial-up connection, data transfers are initiated by the LGN,
whether it is the sender or the receiver.

CLGN AND LOCAL LGNS

The CLGN, as indicated in Chapter 2, is essentially a superset of an LGN, with
unique remote operations and maintenance capabilities. It also has some processing
capabilities related to its (and DAASO’s) role as a transaction entrepot. Generally,
however, the translation, communications, and logging functions are common to both
the LGNs and the CLGN. All LGN descriptions in this document refer to both the
LGN and the CLGN, unless otherwise noted.

TRANSACTION PROCESSING

Since the prototype LGN handles files of transactions rather than individual
transactions, it is not a transaction processor in the commonly understood meaning of
the term. For the test, all transactions are considered to be of equal priority.
Transactions are processed sequentially, in the order received from the host (or the
WAN), except that some multiple card-image DLSS transactions are sorted during
filtering and may be in a different order in the resultant filtered DLSS file.
Guaranteed minimum processing times are not inherent in the prototype LGN’s
design.

3-2

THROUGHPUT

Average sustained throughput rates in a single LGN are as follows:

Download: In the prototype system, download speeds differ significantly
from LGN to LGN and depend almost entirely on available file transfer
software at the site. In general, the highest download throughput rates have
been achieved with file transfer software that had both a host and an LGN
component and that executed in a cooperative manner. Of course, the line
speed of the LGN-to-host connection is a limiting factor. For
3270 connections through a concentrator, competing communications
activity from connected terminals is also a big factor. In other words, the
download throughput rates given here are rough and should be viewed as an
approximate baseline.

» 3270 direct connect with intelligent host transfer software: 60,000 to
120,000 transactions per hour.

» Asynchronous connection using Kermit: 9,000 transactions per hour.

DLSS transaction filtering: 108,000 transactions per hour (1,800 per
minute).

DLSS-to-EDI translation: 7,200 transactions per hour.1
File compression: 360,000 transactions per hour (6,000 per minute).

WAN file transfer (2400 baud line; 128-character packet size, XMODEM file
transfer; compressed file): 7,200 transactions per hour.

File expansion: 540,000 transactions per hour (9,000 per minute).
EDI-to-DLSS translation: 9,000 transactions per hour.

While the prototype system has been running, most of the DLSS transactions
have been single card-image transactions. Multiple card-image transactions of only
about 30 images were downloaded from the various hosts during the test, but DLSS
card-image transactions on magnetic tape of up to 500 cards have been run manually
through the prototype LGN. For this reason, throughput rates based on number of
card images processed may be a more useful measure of performance than those

1Transaction processing rates for the Phase III LGN are considerably burdened by the multi-
tasking software used in the prototype model in an MS-DOS environment. Phase I, stand-alone LGN
speeds (without multi-tasking) were 21,000 transactions per hour (approximately 6 per second) for the
slowest, rhost difficult DLSS-to-EDI translation. EDI-to-DLSS translations were even faster. Rates
for both Phase I and Phase III LGNs reflect high levels of input/output (I/O) accesses per transaction.
This is uncharacteristic of a production LGN, whose I/0 activity should be tuned to a minimal level.
Furthermore, in a production version, multi-tasking would not be based on a cycle-stealing process.

3-3

based on number of transactions processed. The prototype LGN throughput rates for
card images processed are approximately 10 percent greater than those for
transactions.

All processing times, including filtering, compression and expansion, and file
transfer, are based on a Compaq 386/20 supporting a DESQview multitasking
environment with approximately 12 tasks running concurrently. The overhead of
this concurrency significantly degrades the throughput rates as opposed to those
experienced in a stand-alone (single-tasking) environment.

LOCAL AND REMOTE OPERATIONS AND MAINTENANCE

Tables 3-1 and 3-2 list the various prototype LGN operations and maintenance
tasks, respectively, and the extent to which each task can be performed remotely
from the CLGN. All of the tasks can be performed locally.

A procedure developed for the prototype LGN, for synchronizing an LGN’s clock
with the CLGN, using Greenwich Mean Time (GMT) as a basis, has not been made
operational. This inactive implementation is described in the WAN interface
subsystem design alternatives in Chapter 9.

LOGGING ACTIVITY

Each LGN module records to a log every event of significance to the module, by
time and date, as the event occurs. A separate log file is used for each module. While
this approach makes it tedious to look at a historical window of the LGN as a whole, it
makes it easier to examine the processing flow of a particular module. All analysis
for the prototype LGN, including constructing ad hoc audit trails, is done off line.

TABLE 3-1

OPERATIONS TASKS
Operations task Comments
System shutdown Can be performed remotely.
System warm boot Can only be performed locally; in some cases,

System restart

Subsystem shutdown
Subsystem restart (afier subsystem shutdown)

Subsystem suspend/subsystem restart
Performance monitoring

Disk maintenance tasks

particularly if the LGN is outfitted with an
X.25 communications controller, it may be
necessary to power down the LGN and then do
a cold boot.

Can be performed remotely as a special system
shutdown/system restart option; this differs
from system warm boot, which starts the
system from scratch, independently. Note:
this operation cannot be executed on an LGN
having an internal communications controller
or other hardware that requires reinitiali-
zation at system start up.

Can be performed remotely.

Can be performed remotely. Because of time
constraints, this capability was not included
for all prototype LGN subsystems.

Can be performed remotely.

Can be performed remotely by indirect means,
e.g., requesting log files.

Can be performed remotely by executing DOS
commands on the remote LGN.

3-6

TABLE 3-2

MAINTENANCE TASKS

Maintenance task

Comments

Executable program update

Translation table updating

Examining create dates of files and other file
characteristics

Can be performed remotely via system shut-
down/restart operations task for LGNs without
internal hardware boards that require
reinitialization at system start up. Note: this
procedure has not been fully tested in the
prototype LGN.

Fully automated from CLGN, including modulie
suspend and restart. As implemented in the
prototype, this task operates on a fiie basis
only, not on single records.

Can be performed remotely by executing a
remote DOS command whose output is
redirected to a file on the LGN and, then,
requesting that file from the CLGN.

3-6

CHAPTER 4
BASIC DESIGN PRINCIPLES

HARDWARE/SOFTWARE PLATFORM

The prototype LGN runs on a Compaq 386/20 or 386/20e microprocessor. The
386/20 has 5 megabytes (MB) of main memory and a 60-MB hard disk; the 386/20e
has 6 MB of main memory and a 40-MB hard disk. Each LGN has a dot-matrix
printer attached, but the printer is used only on an ad hoc basis; no LGN operations
depend on the printer’s working reliably.l LGNs directly connected to the WAN are
outfitted with an AdCom2-1X.25 communications board theoretically capable of
managing 128 simultaneous virtual X.25 connections (however, in the prototype
LGN environment, it manages only 1). LGNs with an IBM mainframe local host
have an IRMA-2 3278/3279 terminal emulation board. All LGNs have a 2400-baud
modem. LGNs with only a dial-up connection to the WAN use the modem as the sole
means for interfacing with the WAN; LGNs with a direct connection to the WAN use
the modem as a back-up communications device.

The CLGNs at LMI are connected to a Plantronics Micro Turbo Packet
Assembler/Disassembler (PAD) connected to a General DataComm 4800-baud
‘modem and a Rally Data Race 9600-baud modem. Each modem serves as a gateway
for an addressable (direct) WAN line.

DESQview is the operating environment in which the LGN runs. DESQview
provides multi-tasking by exploiting the 80386 chip’s ability to simulate multiple
virtual machines. Although the DESQview environment is not as robust as that of
UNIX, virtually any DOS application can be run, unmodified, in the DESQview
environment. This feature makes it possible to take advantage of the unequaled
number and diversity of DOS-based development tools and products. American
National Standards Institute (ANSI) C is the primary application language of the

1While relying on a printer for a console log (paper is a very reliable storage medium) is
attractive, printers are too undependable for any essential processing functions. They jam, they run
out of paper, and they encounter mechanical problems. Unless the systems using them explicitly
recognize and deal with trouble in the printer connection (most software does not), a printer can render
the system inoperational.

prototype LGN. Table 4-1 lists the complete array of software used in developing and

operating the LGN.
TABLE 4-1
LGN DEVELOPMENT SOFTWARE
Software Function

MS-DOS v3.3 Operating system

DESQview 386 v2.2 Multitasking environment and 386 memory
manager

PolyAWK v1.3 (AWK programming language DLSS transaction filter

interpreter)

SuperSort v1.6 Used in filtering of multiple card-image
transactions

CrossTalk Mk. 4 v1.02a Used at most sites to automate a host session

Frontier Technologies Corporation (FTC) Used to initialize FTC AdCom2-1 communica-

Super-X.25 run-time software v4.21 tion controller board. Used only at sites
directly connected to the WAN.

PKARC/PKXARC File compressor/expander

The following software is used for LGN software development only:

Borland Turbo C v2.0 Primary application development language

DESQview API C library Cinterface to DESQview

Greenleaf Comm Library C-callable routines for communicating with
the WAN

YACCand LEX Parser and lexical analyzer for transiation rules

AccSys function library AP! functions for Paradox

Paradox 3 Data base management system for translation
tabies

FTC Super-£.25 development software v4.21 C-callable routines and data for interfacing

with the FTC AdCom2-i board

Note: APl = Applications Programming Interface.

MODULAR DESIGN

The LGN is divided analytically into separate processing areas called
subsystems; each consists of one or more modules. A module, which is the primary
functional unit of the LGN, is made up of a number of processes. A process, which

roughly corresponds to an executable program, performs a more specialized function
in support of the module to which it belongs. A process is perceived by the DESQview
muliti-tasking environment as the basic operational unit.

Each module is defined in terms of its prccessing and its interfaces with other
modules. Generally, interfaces are defined as interprocess communications (IPCs).
In theory, since the modules are closed except for their interfaces, each can be
developed in any language that can (1) execute in the overall operating environment
and (2) interface with the IPC facility. In practice, it is impractical or impossible for
any language other than C to interface with the DESQview IPC. However, through
the use of additional C-utility programs, it is possible to use any other language as a
main programming platform. Accordingly, in deciding which programming
language to use for each module, we sought a balance between applicability to the
task and ease in interfacing with the DESQview IPC. In general, higher level,
fourth-generation languages have been used where possible to reduce development
time. An example is the use of AWK in the filter module.

Generally, a module is implemented as one or more C-language processes, each
using the DESQview Application Programming Interface (API). Each process waits
for events indicating that action is required. An event is defined as one of several
possible occurrences, listed here in order of their priority:

® Input from the local keyboard

® Message from the operations subsystem
e Expiration of a software-based timer

® Message from any other subsystem

¢ Communications signal from the local host or the WAN.

After making an appropriate response to an event, the process awaits the next event.
This loop continues until stopped by a message from the operations subsystem to shut
down processing.

Those subsystems in which a language other than C is appropriate are handled
as follows: A C-language event manager process runs as described above. When an

4-3

event is detected for an action involving a non-C process, the C-process executes a
batch file process made up of at least these two components:

¢ One or more non-C programs

® A trailer C-program that sends a “process complete” message to the
event-manager C-process.

In a batch process, each program is run sequentially; thus, the trailer C-program is
executed automatically right after the last non-C program. In this way, a
non-C process communicates indirectly with the main event manager process, by
using the trailer C-program as a messenger. The batch process can also contain
header C-programs, which are run prior to the non-C programs and perform
additional IPC-related tasks. The batch process terminates after its last program is
run.

For example, the AWK programming language is used for the input filtering
process. The C event-handling program creates a batch process to run AWK and
accompanying C-programs each time a file requires filtering.

All processes in the LGN are essentially peers of one another. Thus, the
non-C process described, although invoked by another process, is an independent
entity, as opposed to being a child process completely subordinate to the process that
created it.

A significant benefit of a highly modular approach is that each module can
employ a different software developer. Provided the interfaces between modules are
well defined, the developers can code to the interface specifications, taking
preferential liberties in programming without affecting the overall system. This
strategy puts the largest share of responsibility on the interface design, since it will
affect the whole system, its development, and its operation. During the development
of the prototype LGN, the best results were achieved by establishing overall
structures and practices that defined the IPC interface, and then assigning complete
subsystems to individual developers. The benefits of a common programming style
and approach were gained from a cohesiveness within subsystem modules, whereas
adherence to the IPC interface rules was the chief factor in the successful integration
of the disparate subsystems.

4-4

PARAMETERIZED SUBSYSTEM START-UP

A number of parameters are used to tune an LGN to its particular environment.
These generally relate to the frequency of communication with the host and the
WAN. Other parameters specify file and naming conventions, time-out periods, site-
specific processes (generally called by the local interface subsystem), communication
settings, and overall LGN characteristics. Each module has a separate bootstrap
process and its own configuration file (parameter table) containing parameter
settings. In addition, there is a configuration file of system-wide parameters read by
all modules in the LGN. Maintenance of the parameter files is achieved by remotely
controlled file replacement.

Parallel Processing

With few exceptions, all modules in the prototype LGN run in parallel, i.e.,
concurrently. However, since the system processes one file of transactions at a time,
the actual degree of parallelism is usually low at any one time. Nevertheless, there
are exceptions: for example, an LGN can be translating transactions in the DLSS-to-
EDI direction while it is processing transactions in the EDI-to-DLSS direction.
Likewise, a pipe-lining effect occurs if two transaction files from the host download in
rapid succession. In this case, the first file might be translated while the second file is
being filtered. However, if the filter finishes before the translator, the second file will
not begin translation until the first file is finished.

For the prototype model, all processes run at equal priority; no attempt is made
to optimize processing in this respect. In the production LGN, a design objective
should be (1)to accommodate priority traffic and (2)otherwise to minimize
throughput bottlenecks by adjusting module processing priorities during run time.

There are critical instances in which a process requires exclusive use of the
LGN. Atsuch times, all other processing is suspended. For example, when a mailbox
(used for IPC messages) is to be created, a check is made to see whether or not it
already exists; if it does not, one is created. To ensure that another process does not
create the same mailbox during the time between checking and creation, all other
processes are put on hold. As soon as the mailbozx is created, the suspension is lifted,
and LGN processing resumes normally.

4-5

Interprocess Communication

Each process in the LGN communicates via IPC, using the DESQview API
facilities. DESQview uses a mailbox protocol for IPC: each process has mailboxes
into which other processes put messages. A process needs only the name of the
mailbox to send a message; once it is sent, the sender can forget it. This
asynchronous approach works well for the peer-to-peer relationship among processes.
For the prototype, acknowledgment is seldom required. However, a production
system will require (1) more checks to ensure that the receiving process receives the
message intact and (2) logic specifying a number of retries and required actions if
unsuccessful. The present design does not preclude an ordered message dialog
between two processes; it is just not performed automatically as part of the
DESQview IPC.

Synchronization in the prototype model is emulated in two ways. First, an IPC
semaphore is used to synchronize certain processes; in this way, one process can infer
whether or not another is active by the availability or nonavailability of the
semaphore.

Second, certain messages signal that a requested process has been completed.
For example, Process 1 can send a message to Process 2, requesting performance of a
certain task, and then wait a designated period to receive notification of task
completion and error status from Process 2.

Interprocess messages are structured with a header followed by the message.
Exceptions are (1) simple messages in which the header contains all the information
necessary and (2) others, unique to each message type, that use one or more
additional information fields. The message header is constructed as follows:

typedef struct modelshead

{

WORD wType;

char cPriority;

char sQuerymod(SY__MODMNEMLN +1];
char sQuerylgn[SY__ LGNNMLN +1J;
word wlId;

}MODELSHEAD;

4-6

where:

® “wType” is a non-negative integer specifying the message type. Each
message type has a unique number and an associated mnemonic identifying
it. For example, the mnemonic for the message to initiate a filter is
FILTERDLSS (message type 201).

® “cPriority” is the priority code of the message. E stands for expedited,
L stands for low, and S stands for system message. System messages are
ones sent by the system boot module; they have the highest priority.
Low-priority (L) messages are not functional in the prototype LGN, except in
the WAN interface module, where they are used for a specialized purpose.

® “sQuerymod” is the 2-letter name of the module sending the message. Each
module in the LGN has a unique 2-letter identifier defined as a constant,
along with a mnemonic name for the constant. For example,
SY_D2EMNEM equals “DE”, which is the 2-letter code for the
DLSS-to-EDI translator module.

® “sQuerylgn” is the 3-letter identifier of the LGN sending the message.
Normally, this is the same as the LGN on which the message is received.
However, in some cases, the message originates from another LGN. The
chief example of this is CLGN-to-LGN remote commands.

® “wld” is a non-negative integer that serves as an additional qualifier of the
message. It is primarily used for sequencing messages, which is to say that
it is not used often in the prototype LGN.

The simplest messages contain the message header and no additional fields. For
instance, the SUSPEND__ READY message consists solely of a message header, with
wld equal to SUSPEND__ READY (48). Most messages, however, have additional
fields built into their structure. For example, the STARTED message contains one
additional field, tTime__stamp, as illustrated:

typedef struct msg__started

{

MODELSHEAD mMsg_ head; /*MODELS message header*/
time__t tTime__stamp; /*time of day*/

} MSG__STARTED;

A design that relies on the concept of messages sent between modules and
action based on the message is called object-oriented. The key to an object-oriented
design is defining the objects (modules) in terms of message handling. A complete
listing of message structures, defined in the prototype LGN from the perspective of a

receiving module and the processing that the message triggers, is included in the
MODELS LGN system specification and is a prime component of the system’s
detailed design.

Priority Management

Messages are one class of events that are acted upon or rejected by a module. A
module becomes aware of an event by monitoring its object queue, through which all
events are funneled. (The actual message is not sent to the object queue but, rather, a
marker pointing to the event.) For mail message events, each module has one
mailbox set aside to receive system messages from the system boot module. Messages
sent to this mailbox are handled before messages received in any other mailbox;
messages concerning critical actions such as suspensions or shutdowns are received
here.

Peer Relationships Among LGNs

In initiating communications, all LGNs are peers; each can initiate a
connection with another at any time. As implemented in the test system, two
restrictions are placed on this prerogative. First, remote LGNs can initiate a
connection only with the CLGN, not with other LGNs. Second, a connection between
the CLGN and a dial-up LGN has to be initiated by the LGN; there is no outbound
dialing from the WAN. This raises a question of how two dial-up LGNs (in the
production system) might communicate. Two possible solutions might use (1) a WAN
out-dialing capability, if available, or (2) the CLGN as a store-and-forward repository
into which LGN poll periodically.

Remote Operations

The CLGN can send any message to a remote LGN, by embedding it inside a
SENDMSG message sent to the WAN interface module of the receiving LGN. When
the SENDMSG outer layer is stripped off, the embedded message is sent to the
appropriate module. This procedure applies for responses the remote LGN sends back
to the CLGN.

One type of remote message sent by the CLGN is the utility request. When an
LGN receives a utility request, it spawns a temporary process to execute the DOS
command specified in the message. In most cases, the DOS command includes
redirection of output to a file. The CLGN can subsequently request this file so that

4-8

file creation dates and other directory information about an LGN can be analyzed
remotely.

4-9

CHAPTERS
PROCESSING ENVIRONMENT

All software and data files required for operating the prototype LGN are located
on the LGN’s C-drive hard disk. An A-drive (floppy-disk drive) is required for
manual file updates and emergency boots. Forty megabytes of hard-disk storage is
the minimum required for smooth operation of the LGN; having any less capacity
greatly increases the chances of running out of disk space during processing.

Appendix A contains a listing of the contents of the prototype LGN disk
directories. The more important ones are covered here. The \CONFIG directory
contains the configuration files for all modules. Most of the configuration files
pertain to a particular module and are named by a concatenation of a two-letter
module mnemonic with a .CFG extension. Others relate to a subsystem or to the
entire LGN. All configuration files are American Standard Code for Information
Interchange (ASCII) text files with entries of the form

<param> = <value>.

Although the software can interpret <value> as a list of values, in the prototype
implementation, <value> is single-valued.

By convention, two-letter mnemonics are used to identify the top-level
directories. For example, the local interface module is under directory \LI. The
system boot module determines the directory for a module’s executable programs by
reading from its corresponding module configuration file the optional OP__DRIVE
and OP__DIRECTORY parameters. If neither of those parameters is found, the drive
and directory default to the ones listed in the program’s Program Information Files
(PIF's) (see Chapter 6).

The organization of subdirectories under the main module directories is listed
with each module in AppendixA. In general, application programs reside in a
subdirectory called BIN. Beyond that, subdirectory naming conventions are specific
to the module to which they pertain.

No random access memory (RAM) disk is used in the prototype LGN, since all
available memory is used for running programs. Any temporary files are written to
the C-drive in specified directories. In a production model, the single maneuver most
likely to affect translation throughput speed would be a maximum use of virtual
storage.

5-2

CHAPTER 6
NAMING CONVENTIONS

With few exceptions, names for configuration parameters, application
programs, and callable application functions follow accepted coding conventicns.
This chapter lists the naming conventions used for each type of named entity in the
system.

CONFIGURATION PARAMETERS
In general, configuration parameters are of the form
<module>__<name>

where <module> is a two-letter module mnemonic and <name> is a descriptive
parameter name. Table 6-1 shows the module mnemonics.

TABLE 6-1
MODULE MNEMONICS
Mnemonic Module Mnemonic Module
CL CLGN polling SB System boot
D2E DLSS-to-EDI translation SM System monitor
E2D EDI-to-DLSS translation SY Systemwide (all modules)
LD LAN dequeuing WD WAN dequeuing
u Local interface wi WAN interface
oP Operations (subsystem) wQ WAN queuing

PROGRAM NAMES

Executable and batch programs in the prototype were named at the discretion of
their individual developers. Generally, all programs belonging to a particular

module start with the two-letter module mnemonic. This is not so, of course, for
off-the-shelf programs incorporated in a module.

MESSAGES

Message mnemonics are all named (via #define) constants that convey the
message content but follow no convention other than the standard C-language
practice of naming constants via upper-case letters. Message structures (see the
Interprocess Communication section of Chapter 4) are formed by a concatenation of
MSG__ and the message mnemonic.

C-PROGRAM IDENTIFIERS

For C-program identifiers, Hungarian notationl is used. It allows programmers
to overcome the lax enforcement of data typing rules in the C-language. Table 6-2
shows the standard set of Hungarian prefixes as implemented in the prototype
environment. Table 6-3 shows prefixes to the prefixes that further describe the
identifier.

Several exceptions to Hungarian notation naming rules exist in the prototype
system. Some frequently used structures are assigned their own Hungarian prefixes.
Function name identifiers and constants do not use Hungarian notation. Further-
more, much of the translation program code pre-dates Phase III, so a slightly
different Hungarian notation is used in that area.

C-PROGRAM NAMED CONSTANTS

Names of constants follow the standard C-language practice of using all upper
case. Constants defined in include files, which are accessible by all subsystems, begin
with an appropriate two-letter module mnemonic. Constants whose domain is only
one subsystem do not follow any prescribed naming convention.

1Hungarian notation is an increasingly popular naming methodology that prefixes every
identifier with letters suggesting the identifier’s type. In a Hungarian notation variable, all letters up
to the first capital letter are part of the Hungarian prefix.

TABLE 6-2

HUNGARIAN NOTATION TYPE PREFIXES

Notation Type
ac non-AsciiZ string (array of characters)
b BOOL (int)
by BYTE (unsigned char)
< char
dp DATA_PTR(void *)
h DV__API__HANDLE (unsigned long)
i int
| long
m message structure
s AsciiZ string (char *)
st structure
t time__t (defined aslong in Turbo C)
v void or variable argument list
w WORD (unsigned int)

TABLE 6-3

ADDITIONAL HUNGARIAN TYPE PREFIXES

Notation Type
a array
aa two-dimensional array
g global
p pointer
u unsigned
x static

C-APPLICATION FUNCTIONS

While systemwide functions are usually named su__<descriptive-name>,
there are a few exceptions: for instance, names for functions contained within a
module are up to the programmer’s discretion.

PROGRAM INFORMATION FILES

All DESQview processes are invoked via a program information file (PIF) that
must be of the form <2-char-id>-PIF.DVP. In the prototype LGN, <2-char-id> is
the two-letter module identifier for main module processes; otherwise, it is a
descriptive identifier of the process. For example, the main local interface process
PIF name is LI-PIF.DVP; the download script process PIF name is DS-PIF.DVP,

DESQVIEW MAILBOXES

Two mailboxes are used consistently by LGN modules: the system mailbox and
the expedited mailbox. Modules use the default DESQview mailbox, which is
unnamed, as the system mailbox. The expedited mailbox has the value
“<module>__E”, A suite of named constants is declared and set to each expedited
mailbox value. Other mailbozxes, including temporary intramodule mailboxes, do not
follow a naming convention.

6-4

CHAPTER 7
PROCESSING SUBSYSTEMS AND MODULES

The design of the LGN divides processing into four subsystems:
® Local interface subsystem

® WAN interface subsystem

® Transaction processing subsystem

@ Operations subsystem.

These are further broken down into several major modules, each consisting of one or
more processes. Chapters 8 through 11 describe these major subsystems in terms of
their modules.

THE THREE STATES OF MODULE PROCESSING

A module is always in one of three possible states: the Initialization State, the
Operational State, or the Shutdown State. The LGN itself can be considered to be in
one of these three states. When the LGN starts up, it is in the Initialization State, as
are each of its modules. When every module has initialized and confirmed that fact to
the system boot (SB) module, the SB module instructs all others to enter the
Operational State. Most of the time is spent in this Operational State, in which all
transactions are processed and all host and WAN communications take place. The
LGN enters the Shutdown State as the result of a command or a fatal error.
Normally, the Shutdown State ends with termination of LGN execution, requiring
the LGN to be rebooted to the Initialization State. There is a special
shutdown/restart message that enables shutdown to be immediately followed by
restart, i.e., a return to the Initialization State. It is possible for an individual
module to be in the Shutdown or Initialization State while the rest of the LGN is in
the Operational State.1

1This occurs when a module receives a SHUTDOWN message or a RESTART message
(following a SUSPEND or SHUTDOWN message).

741

COMMON MODULE PROCEDURES

A module boots when the SB (see Chapter 11) creates a process and invokes a
canonically named PIF:

<PIF-Drive > :\<PIF-Directory >\<ModMnem >-PIF.DVP

The PIF, in turn, starts the module’s main executable program. The <PIF-Drive>
and <PIF-Directory> are retrieved from the LGN.CFG file. The file BOOT.TAB
lists modules to boot; each module in the list is referenced by its two-letter mnemonic
(<ModMnem>). Each module first performs common and module-specific
initialization procedures and then sends SB a STARTUP message, indicating it is
ready to proceed into the Operational State, or a CANTSTART message, indicating a
failure during module initialization.

As the SB receives a STARTUP or CANTSTART message from each module, it
displays the status in its window on the local console.

Figure 7-1 shows pseudocode2 for the standard module start-up procedure
making up the bulk of the Initialization State. Except for SB, this same approach is
used by each module in the system. SB follows a different path during the LGN
Initialization State, functioning as a central clearinghouse for notification messages.
The SB module, before invoking other modules, creates mailboxes to be used by them;
this procedure allows SB to retain ownership of the mailboxes if a module is shut
down. Individual module start-up procedure opens the mailboxes, reads values for
parameters, and performs all other initialization necessary to proceed te the
Operational State. A STARTUP message sent to SB indicates successful completion
of initialization; a CANTSTART message indicates an error, and SB triggers a
transition of the LGN to the Shutdown State. After the STARTUP message is sent,
the start-up procedure waits SY__WAIT4GO seconds for an OPGO message from SB,
which means that all modules have completed initialization and that the LGN can
advance to the Operational State. For any message other than OPGO, or if
SY__WAIT4GO seconds elapse, the module sends a SHUTDOWN__READY message
to SB, triggering the transition to the Shutdown State.

2Pseudocode, also known as Structured English, uses a small subset of English words in
conjunction with symbolic names representing abstract entities, to describe the sequence of events
making up a process. It is more precise than a flowchart but is less rigorously structured than a format
programming language.

7-2

/* Psuedocode for module Initialization State processing */

BEGIN

OPEN mailboxes previously created by System Boot

READ LGN parameters

READ module parameters

INITIALIZE resources

IF ERROR during INITIALIZE
SEND CANTSTART message to System Boot
PROCEED to Shutdown State

ENDIF

SEND STARTUP message to System Boot

CREATE time and set for SY_ WAIT4GO seconds

WAIT for EVENT from Event-Queue
IF EVENT = OPGO message
PROCEED to Operational State
ELSE
PROCEED to Shutdown State
ENDIF
END

FIG. 7-1. MODULE INITIALIZATION STATE PROCESSING

Figure 7-2 shows pseudocode describing a module’s Operational State, in which
modules spend most of their processing time. Upon entering the Operational State,
each module goes into a loop, (1) awaiting events, (2) acting on events it recognizes,
and (3) treating as an error those it does not. Specifically, the module waits for the
types of messages it serves or for any of the special messages: SUSPEND, RESTART,
or SHUTDOWN. The processing of messages, other than special messages, is
module-specific, although consistency is strived for through use of common
message-handling procedures. Special messages are handled more uniformly, except
that each module’s SHUTDOWN and RESTART activities differ. The module waits
in this loop until receiving a SHUTDOWN message, which initiates transition to the
Shutdown State.

7-3

J* Psuedocode for module Operational State processing */

BEGIN
suspended = FALSE
DO FOREVER
WAIT for EVENT from Event-Queue
IF EVENT = SHUTDOWN message
PROCEED to Shutdown State
ENDIF

IF suspended = TRUE

IF EVENT = RESTART message
READ LGN parameters
READ module parameters
RE-INITIALIZE resources
MOVE (Suspended) EVENTS from Holding-Queue to Event Queue
suspended = FALSE

ELSE
MOVE EVENT to Holding-Queue

ENDIF

ELSE /* notsuspended */
DO CASE (EVENT)
CASE SUSPEND message
SEND SUSPEND-READY message to System Boot
suspended = TRUE
CASE expected message
Act on message
OTHERWISE
LOG ERR
END CASE
ENDIF
END DO
END

FIG. 7-2. MODULE OPERATIONAL STATE PROCESSING

The LGN and its component modules enter the Shutdown State by one of five
events:

® A module sends a CANTSTART message to SB during the Initialization
State.

@ A module fails to send a STARTUP message to SB in the time allotted
during the Initialization State.

® A module sends a CANTSTART message to SB during its re-initialization
following reception of a RESTART message from SB.

® The CLGN sends an LGN__ SHUTDOWN message to SB remotely, via the
WAN.

e An LGN__SHUTDOWN message is sent to SB from the local keyhoard.

A need is recognized for additional means, not implemented in the prototype
system, of entering the Shutdown State, as part of the error procedure for certain
fatal errors. More practicable methods for entering the Shutdown State in response
to a nonrecoverable LGN error should be built into the operational system.

As noted above, the transition to the Shutdown State is always through the SB
module. Figure 7-3 displays the pseudocode for the common module logic for the
Shutdown State.

/* Psuedocode for module Shutdown State processing */
/* Entered upon receivinga MOD__ SHUTDOWN message from System Boot */

BEGIN
SEND SHUTDOWN READY message to System Boot
CLOSE all mailboxes
KILL any temporary mailboxes (not created by System Boot)
FREE other resources as needed
QUIT
END

FIG. 7-3. MODULE SHUTDOWN STATE PROCESSING

HOW A DESQVIEW PROCESS IS INVOKED IN THE PROTOTYPE LGN

Although the SB module is the module chiefly responsible for starting up
DESQview processes, other modules such as the local interface module and the local
area network (LAN) dequeuing module perform this task as well. Therefore, a
general discussion of the mechanics of starting up a DESQview process is presented
here.

Each DESQview process has an associated PIF containing information needed
by DESQview to execute the process properly. The parent process (the one starting a
new process) reads this PIF into its own memory. It can then edit selected fields of
the PIF image in memory. For example, the PIF field specifying the directory where
the process is located can be overridden by the OP_ DIRECTORY parameter, which
is optionally included in every module’s configuration parameter file. Some LGN

7-5

processes use a simplified PIF structure, shown in Figure 7-4, that clumps together
ignored fields; other processes simply refer to PIF fields as an offset within a buffer.
The address of the PIF image is passed as an argument to the DESQview API
function app__start, which starts the process designated in the PIF.

How does the first DESQview process get started? In the prototype LGN, thisis
accomplished via DESQview’s primitive scripting facility, which allows a process to
be invoked automatically upon starting DESQview from DOS, in which case that is
the main process of the SB module.

typedef struct pif /* PIF (.DVP) structure */
char acFiller1 [2]; /* not used by LGN */
char acPgmtitie [32-2]; /* descriptive program title */
char acFiller2 [36-32); /* notused by LGN */
char sPgmstartcmd [100-36]; /* command to start program */
char cDrive; /* defaultdrive (e.g., C) */
char sDirname [165-101]; /* default directory name */
char sPgmparams [229-165]; /* program parameters */
char acFiller3 [233-229]; /* notused by LGN */
BYTE byNlogrows; ™ # rowsinlogical window */
BYTE byNlogcols; I* # cols. inlogical window */
BYTE byRow; {* initial row location */
BYTE byCol; /* initial column location */
int iSysmem; /* system memorysize (KB) */
char acFillerd [367-239]; /* notused by LGN */
BYTE byCtribytet; /* bit-mapped */
BYTE byCtribyte2; /* bit-mapped */
char acKeys [2]; I* keys to start from menu */
char acFiller5 [380-371]; I* notused by LGN */
TBOOL cClose on exit; /* auto-close on exit? (T/F) */
char acFiller6 [384-381]; /* notused by LGN */
BYTE byNphysrows; I* # rowsin physical window */
BYTE byNphyscols; /* # cols. in physical window */
char acFiller7 [388-386); I* notused by LGN */
BYTE byCtribyte3; /* bit-mapped */
char acFillers [SY_PIFLN-389 +1]; /* fill toend */
} PIF;

FIG. 7-4. PIF STRUCTURE

CHAPTER 8
LOCALINTERFACE SUBSYSTEM

The local interface subsystem is responsible for transferring all transactions
between the host and the LGN. One of the prototype test goals is to make use of
existing host-to-terminal file transfer capabilities, rather than modifying the host.
Thus, a flexible design was called for that could segregate site-dependent
communication processes with only minimum impact on the rest of the local interface
subsystem. This segregation is accomplished in the prototype LGN via a separate
download script invoked by the main local interface process. The download scriptis a
batch process that, in turn, calls a site-specific program to maintain the host
connection optionally and perform the data transfer. Figure 8-1 displays the
relationships among the components of the local interface subsystem. Parameters
read at boot time specify site details, including download scheduling information and
the site-dependent program to be invoked. The communications interfaces handled
by the prototype system are

® 3270 terminal emulation

® Asynchronous teletype and terminal emulation.
LOCAL INTERFACE MODULE
Purpose and Description

The local interface module oversees the transfer of all data between the host
and the LGN. Since the actual connection to the host is maintained by programs
called by the download script process, the main local interface process is
host-independent.

The module attempts to initiate a download from the host during “download
windows,” which are simply time periods. There may be one or more download
windows. Within each download window, the host is polled at intervals until a
download is completed successfully or the end of the download window is reached.

8-1

Main process

i

Download script
process

i

Site-specific
download software

}

Host

FIG. 8-1. LOCAL INTERFACE SUBSYSTEM

The values for the download windows and polling interval are read during subsystem
start up.

Start-Up Procedures

The local interface module performs the standard module start-up procedure,
plus additional steps related to invoking the local interface subsystem’s
host-dependent process. As part of the start-up procedure, the module parameters
listed in Table 8-1 are read in. Additional parameters concerning uploading and
multiple physical and logical host connections were defined but are not used in the
prototype system.

Another local interface module start-up task is reading the download window
parameters. The download window parameters are kept in a separate file called

8-2

TABLE 8-1

LOCAL INTERFACE START-UP PARAMETERS

Parameter Description
LI__SESSIONINTERVAL Number of seconds between host polls
LI__DNLDMNEM Mnemonic used in determining PIF that executes the download

Li__DNLDSCRIPT ' Name and optional parameters of site-dependent program

LI__DNLDTIMEOUT Number of seconds to wait before receiving a “completed”

script process
invoked by the download script process

message from the download script process

DLWINDOW.DAT and are read in during start up and after each host session as

well.

The DLWINDOW.DAT file contains one line for each window; each line

consists of the following fields:

Window start time

Window end time

Last download date (YYMM)
Last download time (HHMM)
LGN target file name

Host source file name.

The local interface module uses four mailboxes:

Default DESQview mailbox
Expedited mailbox SY__ LANINTMXEXP

Low-priority mailbox SY__LANINTMXLOW (inactive in the prototype
system)

A holding or deferred mailbox used for storing certain messages to be acted
on later.

The default mailbox is used to receive messages from SB. The expedited mailbox is
used to receive messages from all other modules. The local interface module receives
no expedited messages from any outside module, only from its component processes.

In the prototype, the low-priority mailbox is not used. The deferred mailbox provides
a temporary holding facility when the module is unable to service its expedited
mailbox — during downloads, for example.

If 3270 or asynchronous terminal emulation is involved,
Terminate-and-Stay-Resident (TSR) software is installed when the LGN is booted,
either from the CONFIG.SYS file or the AUTOEXEC.BAT file; TSR software
controlling a device must be loaded before DESQview is invoked.

A timer, created as part of the initialization process, is used to ke »p track of the
time elapsed since a download script process was started. During the Operational
State, if enough time (determined by a parameter) accumulates since the last
download process, the local interface process assumes an error has occurred that has
caused the host connection software to hang.

Processing
Frequency of Operation

The main event-handling process in the local interface module is always
running. Mostly, it is parked on the object queue awaiting a timer! elapse, which
indicates that it is time to attempt a host download. The download script process is
invoked whenever a download attempt is made. Usually, the download script process
oversees the entire session with the host and quits after the download attempt. The
download script process, a batch file, calls other programs serially. These programs
are not DESQview processes and do not run continuously.

Flow of Processing

The frequency of host download polls is governed by a timer. If the local
interface module is not in a download window, the timer is set to the start time of the
next window. If the module is in a download window, the timer is set to expire after
LI__SESSIONINTERVAL seconds, which is the delay time between polls. Figure 8-2
shows the logic used to determine whether or not the module is currently in a
download window. This logic is performed right after start up and after every
download attempt. Note that once a file is downloaded from the host, the module is

1A timer is a DESQview object that can be set to “expire,” or send a time message, at a
prescribed time of day or after a certain number of seconds.

8-4

no longer considered to be in the window in which the download was made. In other
words, for a module to be in a download window, two conditions have to be met:

® The current time must fall between the download window’s start and end
time.

® A download must not already have occurred within this window today.

/* Psuedocode for determining if currently in a download window */

BEGIN
next-start-time = 9999 /* impossibly high value */
current-time = current time
current-date = current date
dnld-window-ct = # of download windows in configuration file
in-window = 0
i=0

DO WHILE i < dnld-window-ct
AND in-window = 0
i=i+1
last-dnid-date = date of last download in ith window
window-start-time = start time of ith window
window-end-time = end time of ith window
IF current-time > = window-start-time
AND current-time > = window-end-time
AND current-date NOT = last-dnld-date
in-window = i
next-start-time = window-start-time
ELSE
/* Thisis always true wheni = 1: */
IF window-start-time < next-start-time
next-start-time = window-start-time
ENDIF
ENDIF
END DO

END

FIG. 8-2. DOWNLOAD WINDOW DETERMINATION LOGIC

During each download poll, the local interface module invokes the download
process, which in turn calls one or more site-dependent programs to perform the
following functions:

® Establish a connection with the host (if the connection is not permanent).

¢ Logon to the host.

® Download all available designated files.
@ Log off the host.
Update file DLWINDOW.DAT.

® Disconnect from the host (if the connection is not permanent).

In most cases, CrossTalk Mk.4 is the program that performs all of these functions.
The main module waits for LI__ SESSIONINTERV AL seconds for a message from the
download script process indicating that the download attempt is finished. If it does
not receive this message in the time allotted, it assumes that a nonrecoverable error
occurred during the host session; the timer is reset, and processing continues.

Because host downloads may take a relatively long time, an additional check
should be made before initiating a host poll, to ensure that a download is not already
in progress. Code for this function was not completed for the prototype system. For
the prototype test, the situation was avoided simply by scheduling download windows
far enough apart to ensure download completion before the start of the next download
window.

The scripts controlling host sessions are located in the directory
\LNDNLD\SCRIPTS and are highly tailored2 to each site. The production system
should employ a sender-driven download design. But the following description of the
flow of processing in the script program is applicable to almost all of the sites in the
Phase III test, and the script program is necessarily described, as an integral part of
the prototype LGN design.

Even though the script is invoked only if the module is currently in a download
window, the script reads in the download window parameters from
DLWINDOW.DAT. Thisreading is done primarily because a script language such as
CrossTalk Mk.4 can more likely read a text file than handle command-line
parameters. Therefore, to find out which download window is in effect, the script
program needs to read the parameters from DLWINDOW.DAT.

After the script reads the download window parameters and performs other
program initializations, it attempts to log on. If successful log-on is possible, an

2This was especially a challenge during the prototype test, since the host environment was
subject to change without notice.

8-8

appropriate return code is passed; if not, the script logs off the host and returns
control to the download script batch process.

Once logged on to the host, the script downloads the host file associated with the
current download window (read in via DLWINDOW.DAT) to a uniquely named file in
the LGN’s \LINDNLD\STAGING directory. The exact software and methodology used
to download the file vary from site to site in the prototype environment. Whenever
possible, file-transfer software with both a host and an LGN component working in
tandem is used (e.g., FTTSO). Otherwise, an asynchronous transfer using XMODEM
or Kermit is used.

After the download, the script checks for the existence of the downloaded file
and the return code sent by the download script process. Usually this code is zero,
since most communications packages’ script languages cannot send a return code.
Note that these checks do not guarantee that the download has been flawless; they
prove only that something is there. At this point, the DLWINDOW.DAT file is
updated to show that a file was downloaded during the window.

A RCVDDLSS message is sent to the LAN dequeuing module, indicating the
name of the downloaded file. The file is uniquely named via the concatenation of a
base-36 timestamp, a one-digit qualifier, and the extension .DLD. Thc timestamp
represents the number of seconds since 00:00:00 GMT, 1 January 1970. Finally, the
local interface module re-reads the download window parameters and resets the
timer accordingly.

Data on all pertinent events are logged, including the values to which the timer
is set, the number of download windows read, the current download window number,
the name of the download script process, the start and end time of the download script
process, and the size and create date of the downloaded file.

Data Structures

The PIF structure (Figure 7-4) is used to start the download file process. No
other data structures of note are required by the module.

8-7

Differences Between LGN and CLGN Implementations

Although the production system’s local interface subsystem is likely to be
greatly different, in the prototype system, the CLGN can emulate all LGN functions.
The CLGN'’s local interface module is virtually the same as the LGN’s.

Shutdown Procedures

Upon receipt of a MOD__ SHUTDOWN message, the standard procedures for
module shutdown are followed and the module terminates.

Serialization

The local interface module must be running all the time. Since it is the module
that initiates the DLSS-to-EDI flow through the LGN, it has no prerequisite process.
On the other hand, the LAN dequeuing module can be serialized to execute after the
local interface module; this process is described under the topic of Serialization in
Chapter 10.

Files

The format of the host files differs from site to site; this factor is one of those
involved in deciding on the appropriate file transfer software. The main local
interface process, however, is not affected by the format of the host file. It passes host
files along, transparently, to the LAN dequeuing module, which then has to filter out
any extraneous header and/or communication data mixed in with the DLSS
transactions.

Alternative Designs

The prototype LGN local interface subsystem is designed with a severe
limitation: no modification of the host software is permitted. Below are design
considerations for a production system free of this restriction:

® Employ sender-driven file transfers

® Couple local interface module and host operating environment more tightly
(e.g., create direct access to host file from C-program or direct access to LGN
IPC from the host).

8-8

CHAPTER 9
WAN INTERFACE SUBSYSTEM

X.25 MODULE
Purpose and Description

The X.25 or WAN interface module provides for either direct or dial-up service
with the commercial WAN used during the prototype test, as shown in Figure 9-1. It
is responsible for connecting with the WAN and maintaining a session with a
remote LGN. All transactions and information exchanged between an LGN and the
CLGN are managed by the WAN interface. During the test, remote LGNs have
communicated with the CLGN only; direct LGN-to-LGN communication has not
taken place. Unless otherwise noted, this restriction on remote LGN communi-
cations is implied for the rest of this section.

Start-Up Procedures

Because the communications link must be initialized before the WAN interface
module can proceed to the Operational State, this module performs a number of tasks
_in addition to the usual start-up chores. Also, for LGNs that are directly connected to
the WAN, initialization code for the AdCom2-I X.25 board is loaded beforehand in the
AUTOEXEC.BAT file, as per DESQview’s restrictions with device driver software.

IPC Start-Up Procedures

The module first opens its expedited and low-priority mailboxes (recall that
these were created previously by the SB module). Actually, the low-priority mailbox
is used for storing previously deferred messages,! rather than ones of low priority.

1After the expedited and low-priority mailboxes are opened, a deferred mailbox is created and
opened; it is used as a holding area for messages involving unsuccessful WAN transmissions. During
the Operational State, after an unsuccessfu) attempt to process a WAN transmission message, the
message is retained in the deferred mailbox for ulDefertimeout seconds, and then transferred to the
low-priority mailbox. When no expedited messages precede it in the queue, the message is processed
again. If the WAN transmission is again unsuccessful, the message is placed back in the deferred
mailbox and the cycle starts over. A message can be deferred and subsequently retried up to
iDeferLimit times. ulDefertimeout and iDeferLimit are read in as configuration parameters.

LGN

WAN dequeuing
subsystem

WAN dequeuing
subsystem

WAN interface
module

) X.25 level-ll and
Modem A level-lll software

T 7

FIG.9-1. WAN INTERFACE SUBSYSTEM

The WAN interface module creates four timers used for scheduling and
synchronizing different tasks during the Operational State:

® hCheckx25__timer. The CheckX25 timer determines the time allowed
between checks for status changes in the communications interface.

@ hCheckipc__timer. The CheckIPC timer regulates the time spent between
instances of polling the IPC object queue. It works in tandem with the
CheckX25 timer. Note that the CheckX25 timer signals X.25 polling to end
and IPC queue (event queue) monitoring to start, while the CheckIPC timer
signals IPC queue monitoring to end and X.25 polling to start. The module
spends most of its Operational State time checking alternately for IPC and
communications events. This processing flow, along with the role played by
the two timers, will be explained in more detail under the topic of Flow of
Processing.

® hDeferred__timer. The Deferred timer expires every ulDefertimeout
seconds, and all deferred messages are moved to the low-priority mailbox.
As a consequence, they are back into the object queue and eligible once again
for processing.

® hIPCStat__timer. The IPCStat timer expires every ullPCStatinterval
seconds (typically, the expiration interval is 24 hours). The timer’s
expiration signals the module to write an entry to the log and the screen
summarizing IPC activity over the timer interval.

These timers are created during module initialization but are not set until the
Operational State begins. The IPCStat timer is an exception; it is set during start up,
enabling the messages exchanged as part of the Initialization State protocol to be
included in the module’s next IPC status report.

Once the mailboxes and timers are created, the configuration parameters are
read in. Setting many of the WAN interface parameters is optional; they have
default values. Table 9-1 shows the complete list of module-specific configuration
parameters; where a default value is shown, entry is optional for the parameter in the
WAN interface configuration file (WI.CFG). Two parameters included in the table
are not specific to the WAN interface module but are very important to its operation.
The SY__ LGNCOMM parameter indicates whether the LGN is configured as a
direct-connect site or a dial-up site. If the LGN is direct-connect, the SY_ NETADDR
parameter contains the LGN’s network address.

9-3

TABLE 9-1

WAN INTERFACE BOOT PARAMETERS

Parameter Description Default
WI_ CHECKX25QUEUE Wait time between X.25 polls 5 seconds
WI__ CHECKIPCQUEUE Wait time between IPC checks S seconds
WI DEFERTIMEQUT Wait time between retrying 60 minutes
- messages
WI_ DEFERLIMIT Maximum number of retries 5
WI_FTCWINT FTC AdCom 2-] software 105 (0 x 69)
interrupt number
WI__DEFAULTDIR Top-level directory under
which subdirectories are
found
WY__LGNCOMM Type of WAN interface
(direct or dial-up)
If the LGN is directly
connected to the WAN:
SY__NETADDR Network address of the LGN
If the LGN has a dial-up
connection to the WAN:
WI_NETPHONE Network phone number
WIi__BAUD Baud rate 2400
WI__PORT LGN comm port number
(typically 1 or 2)
WI_ PARITY Parity (“E*, “O”, or “N”) “N*"
WI__STOPBITS Stop bits per character 1
WI__DATABITS Data bits per character 8
WI_ATTEMPTS Maximum number of times to 5

try dialing the network

Note: FTC = Frontier Technologies Corporation.

Communications Start-Up Procedures

9-4

When the LGN is direct-connect configured, after IPC initialization is
completed, the WAN interface module initializes the X.25 communications hardware
and software and the X.25 level-II link and level-III link.

All direct WAN communications go through the AdCom2-I communications
controller board. The module interfaces with the AdCom2-I board via API function
calls and global data structures. Before invoking any AdCom2-1 API functions, the
module initializes a data structure that holds packet and frame parameters used by
the AdCom2-I board during X.25 communications. The prototype LGN maintains
parameter values for several network environments, including commercial WAN
defaults, Defense Data Network (DDN), direct (AdCom2-I to AdComZ2-1, bypassing
the WAN), and loop-back (for testing). All environments except DDN have been
encountered at some time during the Phase III test. In the prototype, only one of
these conditions can be in effect at an LGN at any given time; only recompiling the
WAN interface software can change the WAN environment setting. In a production
LGN, this configuration management procedure must be more flexible. Table 9-2
shows the values of the more significant parameters for a default commercial WAN
connection used during the test.

Once the X.25 parameters are set to starting values, the module initializes the
X.25 level-II link and level-III link to the WAN, using the AdCom2-I API functions.
The LGN uses only one line for an X.25 session; only one line (line 0), the first line
available on the AdCom2-I board, isinitialized.

Clock Synchronization

In a production LGN, calibration with the CLGN clock will need to be
established before the LGN can proceed to the Operational State. In the prototype
LGN, code was written to calibrate the LGN clock with the CLGN but was not
activated. The clock synchronization algorithm coded is described later under the
topic of Algorithms.

Processing

Frequency of Operation

The application software for the WAN interface module is always operating. If
the LGN has a dial-up connection to the WAN, it remains parked in the IPC queue
waiting for events; if directly connected, the module seesaws between the IPC queue
and the X.25 line, monitoring each area for activity.

9-5

TABLE 9-2

SELECTED X.25 INITIALIZATION PARAMETERS

Parameter Value Meaning
Packet parameters:
line 0 Line to which the initialization applies
term__type 1 Specifies DTE (1) or DCE (3)
ccittyear 0 Specifies CCITT 1980 (0) or 1984 (1)
passive 0 Send restart packet onlink initialization
modulo 1 Pending packet modulus
mbit 1 Allow m-bit use
mbitmode 5 Enable data splitting and re-assembling
qbit 0 Do not distinguish between X.25 control
packets and data packets in packet header
dbit 0 Disable remote DTE acknowledgment of data
packets
ddn 0 Disable DDN compatibility
ddnstand 0 Do not use DDN standard service on call setup
sdu 1024 Maximum data buffer size to be delivered to
or from X.25
tx__max_packet_ size 1024 Maximum packet size to receive
rx__max__packet_size 1024 Maximum packet size to send
tx__packet_size 128 Level 3 send packet size
rx__packet size 128 Level 3 receive packet size
num_ pvc 0 Number of permanent virtual circuits
timers and retry counters a CCITT and 1SO timers T20 - T28
CCITT 1980 facilities usedon a
per-call basis:
fcp_negotiate 1 Enable flow control parameter negotiation
Frame-level parameters:
mx__frame__size 1028 Maximum size data passed to level 3
t1__time 60 Wait time before retransmitting a frame
(value is in units of SOms)
n2_ cnt 3 Maximum number of retransmission attempts
frame__modulo 8 Frame sending modulus
frm_window_size 4 Maximum number of outstanding frames

s Values recommended in FTC Super-X.25 DOS Programming Manual, Version 4.1, Appendix A are used.

Flow of Processing

The main processing loop logic and the handling of messages by this module
depend on whether the LGN’s WAN configuration is direct or dial-up. For a direct-
connect LGN, the module services DESQview events and incoming X.25 packets as
well.

For DESQview IPC service, the module parks in the DESQview object queue
until a message is received or a timer expires. If the CheckX25 timer expires, the
module switches to the X.25 service and checks for incoming packets. If no packets
are received, processing switches back to the IPC queue. Packets received are
processed until time expires for the X.25 service interval; when the time is up, the
module returns to monitoring the IPC queue. This loop continues irdefinitely until a
SHUTDOWN message arrives in the object queue. Figure 9-2 shows pseudo-code for
the WAN interface module Operational State processing for a direct-connect LGN.
The processing is the same for a dial-up LGN, except that the X.25 step is skipped.

A direct-connect LGN monitors the X.25 WAN connection directly by using
Frontier Technology Corporation’s (FTC’s) Super-X.25 API function calls to
communicate with the AdCom2-1 hardware. When servicing the X.25 connection
during the Operational State, the WAN interface module listens for a CALL
REQUEST packet on line 0 (the X.25 line initialized during start up). If a CALL
REQUEST packet is not detected within ulCheckIPC seconds, the module switches
back to IPC processing.

When a CALL REQUEST packet is received over the WAN line within
ulCheckIPC seconds, the module responds by sending a CALL ACCEPT packet.
Embedded in the first DATA packet following the CALL REQUEST packet is a code
indicating the type of message being sent by the remote LGN. The coding scheme
used is termed the MODELS Network Protocol (MNP). It begins with a one-
character identifier (in the first DATA packet) representing the action requested by
the remote (calling) LGN; if required, supplemental data (e.g., a file name) are also
included in the packet. Two MNP codes — A (Acknowledge) and N (Negative
acknowledge) — sent by the called LGN provide an immediate response to an MNP.
The MNP is summarized in Table 9-3. When two codes are used to indicate the same
action, one refers to a more streamlined version of a request than does the other.

9-7

" Psuedocode for WAN interface module
Operational State processing */

BEGIN
X25-seconds =5
IPC-seconds =5
DO FOREVER
Set CheckX25 timer to IPC-seconds
check-X25 = FALSE
DO WHILE check-X25 = FALSE
WAIT for EVENT from IPC-Queue
DO CASE (EVENT)
CASE SHUTDOWN message
PROCEED to Shutdown State
CASE CheckX25 timer expiration
check-X25 = TRUE
CASE expected message
Act on message
OTHERWISE
LONG ERROR
END CASE
END DO
Set CheckIPC timer to X25-seconds
seconds-left = X25-seconds
DO WHILE seconds-left > 0
WAIT for incoming packet for seconds-
left seconds
IF incoming packet received
PROCESS packet
CHECK CheckIPC timer
SUBTRACT seconds remaining on
CheckIPC timer from seconds-
left
ENDIF
END DO
END DO
END

FIG. 9-2. WAN INTERFACE MODULE OPERATIONAL
STATE PROCESSING FOR DIRECT-CONNECT LGN

Once the MNP code is validated, the module services the remote LGN’s request.
As long as time remains on the CheckIPC timer, the module monitors the X.25 line
for another DATA packet, until it is time to switch over to IPC processing.

Many of the IPC messages processed by the WAN interface module are the
counterparts to remote messages received via the WAN. The LGN, when processing

9-8

TABLE9-3

MODELS NETWORK PROTOCOL SUMMARY

MNP Code Meaning
A Acknowledge (ACK); used to acknowledge requests
C Request to receive any file being stored in outbound directory destined for
calling LGN
E Request to receive file that matches a prototype
ForP Request to send a file
H Remote message
K Request for confirmation that a table is ready to be received by calling LGN;

generally followed by T

N Negative Acknowledge (NAK); opposite of A

Request to receive any message being stored in outbound directory destined
for calling LGN

R Request to send an EDiI file
SorU Request to receive a particular file
T Request to receive table specified in reply to previous K request
X Request to receive any file request being stored in outbound directory

destined for calling LGN

IPC messages, sends the same MNP commands that it waits for when monitoring the
WAN line. At the start of IPC processing, the CheckX25 timer is set for ulCheckX25
seconds. The module awaits an IPC message until the CheckX25 timer
elapses,processing those messages that arrive during the timer interval and
switching back to monitoring the X.25 line2 when it expires.

Except for SUSPEND and SHUTDOWN messages, all IPC messages sent to the
WAN interface module prompt a WAN transmission to a remote LGN. The data
transmitted can be an EDI file, a table, a message, a request, or a response to a
request (which can be a file, message, or table). The most prevalent message
processed is SENDEDI, which instructs the WAN interface module to transmit an

2For a dial-up LGN, IPC event processing is interrupted by the CheckX25 timer every
ulCheckX25 seconds, but the CheckX25 processing is not executed. Instead, every ulCheckX25
seconds, the module takes a momentary break from checking and servicing the IPC queue.

9-9

EDI file to a remote LGN. The SENDEDI message contains the full path name of the
EDI file, both asitexists on the local LGN and as it will exist on the receiving LGN.
It also includes the TORIC, which is an index into the file DODAAC.DAT.3 This file
maps the TORIC to a remote LGN, its network address, and an indicator of whether
the remote LGN is dial-up or direct-connect to the WAN. All messages sending data
to a remote LGN use the DODAAC.DAT file.

Another IPC message, GETEDIFILE, is sent at regular intervals by the CLGN
polling module. This message is used by dial-up sites to poll the CLGN for the
following information:

® EDI files

® Messages

® Filesother than EDI files
® File requests

@ Table updates.

Since a dial-up LGN cannot be called directly, polling the CLGN is the only way that
LGN can receive EDI files and other data. The WAN interface attempts to do the poll
in one telephone call. After completing each of the above steps, the module proceeds
to the next step; if necessary, it redials the WAN.

To initiate a network call, the destination LGN’s communications profile first is
extracted from the DODAAC.DAT file, as described above. (If LGN-to-LGN
communications are in operation and the destination is a dial-up LGN, which cannot
be called directly, the destination will default to the CLGN. The CLGN holds data for
dial-up LGNs in a staging directory until the remote LGN polls the CLGN for data.)
For a direct-connect LGN, the X.25 level-II and level-IIl links are re-initialized.
Next, a CALL REQUEST packet including the addresses of both the calling LGN
(only the CLGN in the test) and the called LGN is assembled and delivered across the
WAN. The module then awaits a packet on the WAN line. If it is anvthing other
than a CALL ACCEPTED packet, the line is closed and the call attempt is deemed
unsuccessful.

3The DODAAC.DAT file was originally indexed by DoD Activity Address Code (DODAAC), not
TORIC; hence the misnomer.

9-10

If the LGN has a dial-up connection to the WAN, it communicates with the
WAN via a public PAD; it also requires more steps to establish a connection. First,
the serial communications port is initialized (once this is done, the serial port can be
used indefinitely for communications until the LGN is shut down). Initialization is
accomplished with the help of the Greenleaf Comm Library suite of communications
functions. In fact, on a dial-up LGN, all interfacing with the serial port (and, thus,
with the modem and the WAN) is done via the Greenleaf functions. Once the serial
port is initialized, the WAN interface module telephones the network via the serial
port. Specifically, it calls a modem (provided by the WAN), which is connected to a
PAD, wakes up the PAD, sets some initial PAD parameter values, establishes a
WAN session with the remote LGN, and sets some additional PAD parameters. At
this point, it is ready to begin an MNP dialog.4

For both direct-connect and dial-up LGNs, the WAN interface module makes
multiple attempts to call over the WAN. The number of retries for various steps in
the WAN calling process is determined by a mixture of module start-up control
parameters and hard-coded values. Any message involving data transfer that
exceeds a maximum number of tries or that fails during file transfer is put into the
holding mailbox, where it will be retried when the Deferred timer expires. After a
message has been retried WI__ DEFERLIMIT times, it is discarded and an error entry
is written to the log.

Every transmission of files or other data between two LGNs is preceded by one
or more MNP codes indicating the action to follow. In the case of a CLGN poll, the
entire session could consist solely of MNP codes sent back and forth. In cases (such as
the processing of a SENDEDI message) where a file transfer ensues, the file transfer
mode used is XMODEM/CRC with a buffer .ize of 896 bytes.

At the completion of a WAN session, the WAN interface module closes the
communications line. In the case of a direct connection, it sends a CLEAR REQUEST
packet to the remote LGN and waits for a CLEAR CONFIRMED packet in response.
If the connection is dial-up, the module hangs up the telephone line.

4The specific characters exchanged to connect with the PAD and establish a network session are
highly tailored to the WAN being used. By the same token, the values for the PAD parameters will
probably vary from network to network. In the prototype LGN, the PAD parameters were set to make
the WAN as transparent as possible (i.e., no echo, no editing, no flow control, etc.).

9-11

In addition to handling IPC messages, the WAN interface takes appropriate
action on the expiration of either the IPCStat timer or the Deferred timer. (Recall
from the IPC start-up procedure that expiration of the Deferred timer results in the
transfer of all deferred messages from the deferred mailbox to the low-priority
mailbox.) Since messages in the low-priority mailbox can get bumped in the IPC
queue by any other messages, they may never reach the top of the queue. However,
in practice, the waiting line of messages in the queue is short, and the low-priority
messages usually are processed immediately. In the production LGN, a more
sophisticated method will be needed to guarantee that the maximum wait times for
messages is not exceeded.

For the IPCStat timer, each time a message is (1) received, (2) sent, (3) deferred,
or (4) retried during normal processing, the module updates counters that keep track
of those four message activities. When the IPCStat timer expires, the module writes
entries to the log and to the local console showing the count for each of those message
activities since the previous IPCStat timer expiration. For each message activity,
subtotals are listed by message type (e.g., SENDEDI) occurring during the
designated time interval.

Data Structures

Global Information Structure (WAN__GLOBAL). The WAN__GLOBAL
structure contains parameter values, mailbox and timer handles, and other
information reflecting the LGN’s current state. Its component variables are used
frequently throughout the module. The WAN__GLOBAL structure is shown in
Figure 9-3. Nested within the WAN__GLOBAL structure is the DIAL__INFO
structure, which contains variables describing the asynchronous communications
connection of a dial-up LGN. It is shown in Figure 9-4.

FTC Global Structures (INIT__GLOB and DATA__DESC). Data passed between
the Super-X.25 API functions are in the form of globally accessible data structures.
The INIT__GLOB structure holds the X.25 level-2 and level-3 initialization
parameters. The DATA__DESC structure consists of a pointer to the data area of an
X.25 packet plus additional fields that further describe the packet.

Inter-LGN Message Structure (MSG__SENDMSG). Although the
MSG__SENDMSG structure is relatively simple, it is important in the sense that

9-12

typedef - struct wan_ global
{
BOOL bRestart; /* RestartFlag */
BOOL bSuspended; /* Suspended Flag */
BOOL bDirect; /* Director Dial-Up */
char sDefaultdir[SY FILEMLN + 1]; /* 1st Level Directory */
char slgn(SY FILEMLN + 1] /* LGN Identifier */
char sMod name[SY MODMNEMLN + 1]; /* Module Mnemonic */
char sMetaddr{SY X25ADDRLN + 1]; /* LGN’s Network Address */
DIAL INFO stDial info; /* Dial-Up Information */
DV ADIHANDLE hExp ~mailbox; /* Expedited Mailbox Handle */
DV~ ADIHANDLE hLow mailbox; /* Low-Priority Mailbox Handle */
DV ADIHANDLE hDef “mailbox; /* Deferred Mailbox Handle */
DV~ ADIHANDLE hSys mailbox; /* System Mailbox Handle */
DV _ADIHANDLE hCheckipc timer; /* CheckIPC Timer Handle */
DV ADIHANDLE hCheckX25 timer; /* CheckX2S Timer Handle */
DV~ ADIHANDLE hDeferred "timer; /* Deferred Timer Handle */
DV~ ADIHANDLE hIPCStats ~timer; /* IPCStat Timer Handle */
int™ iDeferLimit; /* Max # of Message Retries */
unsigned long ulCheckipcqueue; /* ChecklPC Timer Interval */
unsigned long ulCheckX25queue; I* CheckX25 Timer Intervai */
unsigned long ulDefertimeout; /* Deferred Timer Interval */
unsigned long ulQuiettimeout; /* NotUsed */
unsigned long ulTeardowndelay; /* Not Used */
unsigned iong ulipcstatinterval; /* IPCStat Timer Interval *)
}WAN_GLOBAL;

FIG. 9-3. WAN INTERFACE GLOBAL INFORMATION STRUCTURE
/* Global dial-up information (ignored for direct-connect LGN) */
typedef struct dialup
{
int iPort; /* Com Port Number (0= COM1, 1 =COM2) */
int iBaud; /* Baud Rate */
int iParity; I* Parity (Odd, Even, or None) */
int iStopbitss; * Number of Stop Bits */
int iDatabits; /* Number of Data Bits *
int iAttempts; /* Max Number of Dial Attempts */
int iSpeaker; /* Modem Speaker Status (0 = Off, 1 =0n) */
char sNetphone[21]; /* WAN Telephone Number */
}DIAL__INFO;

FIG.9-4. DIAL INFO GLOBAL STRUCTURE

9-13

every message sent over the WAN is passed in this structure. It is shown in
Figure 9-5.

/* Message structure used when sending a message over the WAN */

typedef struct msg_sendmsg

MODELSHEAD mMsg head; /* MODELS message header */
char sDestmod[SY MODDMNEMLN + 1]; /* Destination module */
char sLgn{SY LGNMLN + 1]; /* Destination LGN */
BYTE - bPriority; /* Message priority */
int iMsglLen; /* Lengthof embedded msg. */
char acMsgtest[SY_MAXMSG LN]; I* Message text and data */

}MSG__ SENDMSG;

FIG. 9-5. INTER-LGN MESSAGE STRUCTURE

Algorithms

Queue Service. The means by which the WAN interface module equitably
services both incoming X.25 packets and IPC events was described earlier under
Flow of Processing.

Clock Synchronization. A clock synchronization algorithm was incorporated
into the prototype system but has not been activated during the test. Activating the
code is a trivial operation. But, since the algorithm is relevant to the design of a
production LGN, it is described here nonetheless. Because all transaction files are
timestamped as they move through the MODELS process — from the source LGN,
through the WAN, to the destination LGN — the system clocks in each LGN in the
system must be closely synchronized. The clock synchronization algorithm has the
WAN interface module at each LGN set up a session with the CLGN during its
Initialization State. The LGN then sends a series of WI__ CLKREQCNT messages of
type CLKREQ to the CLGN, each separated by a 1-second delay. Each message
contains the system time according to the local LGN. The CLGN responds to each
CLKREQ message with a CLKRESP message containing the time originally entered
by the local LGN and the time (from the CLGN’s viewpoint) that the CLGN received
the message. To this information, the local LGN adds the time the response was

9-14

received (according to the local LGN). After WI__ CLKREQCNT query-response
pairs, three sets of numbers will have been developed:

{QL():1 < =i <= WI_CLKREQCNT} Time (according to local LGN) when query
i was sent.

{RY():1 <=i <= WI_CLKREQCNT} Time (according to CLGN) when query i
was received.

{RX(@{):1 <=i <= WI_CLKREQCNT} Time (according to local LGN) when
response i was received.

The average round-trip propagation delay for a query-response is:

_zl)al)

10

Assuming the delay in each direction is equal,5 then the average delay in each

2 |}

20

p—
Adjusting for the delay, the LGN’s clock is set to:

S [=(s}ed4)

10

+u

Differences Between LGN and CLGN Implementations

The WAN interface module makes no distinction between the LGN and CLGN
environment, even though only the CLGN is capable of executing such tasks as
remote module suspensions or communication with another LGN on the WAN. These
differences are all resolved by either (1) input tables or (2) the makeup of messages
sent to the WAN interface module by other modules in the LGN.

SIf a systematic bias in directional propagation delay exists and is constant, a small refinement
in the algorithm can correct it.

9-15

Shutdown Procedures

The WAN interface module acts when it receives a SHUTDOWN or SUSPEND
message. In addition to following the normal procedure of suspending message
processing, it disconnects from the direct or dial-up communications line and stops its
array of timers.

Serialization

It is not feasible to serialize the WAN interface module with any other
processes; it must be constantly monitoring the X.25 line for incoming packets. In
addition, other tasks such as IPC statistics updating and CLGN polling (for a dial-up
LGN) depend on continuously running timers.

Files

Two types of files — EDI files and general files — are sent and reccived by the
WAN interface module. The primary processing difference between them is that the
EDI file is deleted after successful transmission. The WAN interface module of the
sending LGN is responsible for names and locations of the files.

Alternative Designs

The WAN interface module of the prototype LGN suitably performs its task of
providing a WAN communications link. However, as a by-product of running the test
in a number of different environments, some desirable alternative design features for
the production LGN have been uncovered:

® The ability to handle more than one logical WAN session. This capability is
already inherent in the X.25 protocol and in the FTC hardware and
supporting software. Additional logic would need to be programmed into the
module.

¢ It would be beneficial, especially in a high-volume, multiple virtual session
environment, for the module to be able to recognize and take action in
response to other types of packets, those it currently ignores. The X.25
supervisory packets in particular are helpful in determining the causes of
communications errors.

9-16

CLGN POLLING MODULE
Purpose and Description

The CLGN polling module is a small, single-purpose module activated on dial-
up LGNs only. It regularly sends messages to the WAN interface module directing it
to poll the CLGN for EDI and other files, file requests, and remote messages.

Start-Up Procedures

The CLGN generally performs a subset of the standard LGN module
Initialization State sequence. The module receives only system messages from SB.
Therefore only the default, system mailbox is used. In addition to standard
systemwide parameters covering general LGN information, the following parameters
are obtained from configuration files during start-up:

CL_POLLINTERVAL CLGN polling interval (number of seconds)

WQ__QUEUEDIR Outbound directory of EDI files on the CLGN
WQ__STAGE1DIR Destination directory for files received from the
CLGN

The module creates the CLGN Polling timer, which is used during the
Operational State to regulate the sending of messages to the WAN interface module.

Processing

The CLGN polling module consists of one program, which responds to the usual
system messages (SUSPEND, SHUTDOWN, and RESTART) and only one other
event: expiration of the CLGN Polling timer.

Frequency of Operation

The module runs continuously. Most of its time is spent waiting in the IPC
queue for the expiration of the CLGN Polling timer.

Flow of Processing

After receiving an OPGO message from SB signaling transition to the
Operational State, the CLGN polling module sets the CLGN Polling timer to
CL_POLLINTERVAL seconds. Subsequently, the module enters its main
processing loop of parking in the IPC queue awaiting a system message

9-17

(i.e., SUSPEND, SHUTDOWN, or RESTART) or the expiration of the CLGN Polling
timer. When the timer expires, the module forms a GETEDI message and sends it to
the WAN interface module.

To accommodate the testing environment, the polling interval has been
changed frequently. Suppose five new files were to be sent to a dial-up CLGN with
the polling interval set at 24 hours; it would take 5 days to update the LGN. To
overcome this problem, the polling module reads the CL__POLLINTERVAL
parameter with every timer expiration, setting the timer to the most recently
acquired CL__ POLLINTERVAL value. In the example, the CLGN first sends a new
polling configuration file specifying a smaller polling interval, typically 30 minutes.
From then on, the LGN polls the CLGN every 30 minutes instead of once a day. After
all the files are sent, the CLGN sends the LGN another configuration file restoring
the original polling interval of 24 hours.

Shutdown Procedures

Upon receipt of a SHUTDOWN message, the CLGN polling module follows
standard LGN module Shutdown State procedures.

Serialization

This module does not run in a serial fashion; its main processing task is
dependent on a continuously running timer that is independent of any other LGN
activity.

Alternative Designs

In a production system, the tasks performed by the CLGN polling module could
be incorporated into the WAN interface module. For purposes of developing the
prototype, making the CLGN polling function a separate module was a simpler
design, providing more modularity.

9-18

CHAPTER 10
TRANSACTION PROCESSING SUBSYSTEM

Figure 10-1 shows the transaction processing subsystem in terms of
¢ Its component modules

@ Tables used by the translation modules

® The flow of information between modules

® The interfaces between the transaction processing subsystem and other
subsystems with which it communicates.

The prototype LGN cannot recognize EDI transactions or Service-specific
transactions that fall outside of the DLSS format (as understood by the LGN). In the
operational system, both of these types of transactions will be passed directly to the
WAN queuing module, bypassing the translator.

LAN DEQUEUING MODULE
Purpose and Description

The LAN dequeuing module (shown in Figure 10-2) transforms files
downloaded by the local interface module into the DLSS-to-EDI (D2E) translator
format. It is able to distinguish between single-card and multiple-card DLSS
transactions. Cards belonging to multiple-card transactions are grouped together
and sorted. The module assigns a unique transaction ID to each transaction
processed. Data that are not part of any transaction are discarded.

The module is made up of two DESQview processes (two programs): the main
event-handling process and an AWK filter process. To support a single translation,
there may be up to five instances of the AWK filter process.

Start-Up Procedures

The LAN dequeuing module is created when the system boots. It is initialized
via standard module initialization code. As usual, it does not open or use the low-
priority mailbox. Two other mailboxes are created: the expedited mailbox and a

10-1

DLSS-to-EDI
translation ~

Error and log g 5
files L ¢
[}]
Translation ! Address |}
tables H tables H
'\ —— e }
................. | @
] / K\
] / AN
] \
] ‘\
] A Y

EDI-to-DLSS
translation

dequeuing

4
(4
’I
WAN WAN
and filtering dequeuing queuing

...... ——— :
’I
'I
,I
LAN WAN
interface interface

f

- o el wn of

6

....... Modules required in an operational
system not included in the prototype.

FIG. 10-1. TRANSACTION PROCESSING SUBSYSTEM

10-2

(Upto 5)

AWK filter
process

Raw DLSS
transactions

LAN
Local . D2E
. dequeuing
interface main process translator

Filtered DLSS
transactions

Error
transactions

FIG. 10-2. LAN DEQUEUING MODULE

“semaphore mailbox.” While, according to DESQview, the semaphore mailbox is
technically a mailbox, in reality it is a semaphore. Only one process can have
possession of the semaphore at any given time. A process can determine whether or
not it currently owns the semaphore; by this method synchronization among
processes can be achieved.

Only one module-specific parameter, LD__FILTERPIFDIR, is read during
directory initialization; it contains the PIF for the AWK filter process. The main
LAN dequeuing program requires the location of the filter process’ PIF in order to
read and use the file in starting the filter process during the Operational State.
Another parameter, the current serial number, used during the Operational State is

10-3

read on an as-needed basis during processing. The value is kept as an ASCII stringin
a separate file called SERIALNM.CFG. This file is updated each time a batch of
transactions is filtered.

Processing

As is the case with other modules in the LGN, the main processing role of the
LAN dequeuing module is to await specific IPC events. Critical IPC messages to this
module are RCVDDLSS, from the local interface module, and FILTERDONE, an

intra-module message from the filter process.

Frequency of Operation

The main event-handling process of the LAN dequeuing module is always
running. When not processing a specific message, it is parked in the IPC queue. The
filter process is executed when needed and is terminated once it has completed its
filtering tasks.

Flow of Processing

The main loop checks for RCVDDLSS messages in the expedited mailbox; when
one isin the queue, it is removed and processed. The sFilenm field in the RCVDDLSS
message contains the name of the file to be filtered. The file name consists of a
timestamp, assigned previously by the local interface, with the extension .DLD. The
file is in the directory \LNDNLD\QUEUE. Another field in the RCVDDLSS message
specifies the host name. The LAN dequeuing module is designed to invoke a separate
filter process for each host connected to the LGN. During the prototype test, the LGN
has been connected to only one host, so only one file filter has been developed.

When the RCVDLSS message is read, a separate process is started to filter the
file sFilenm. The parameters sent to the filter process are: (1) the host name; (2) the
file name, without the extension (i.e., the file’s timestamp only); and (3) the LGN
name. The filter process uses the LGN name as a component of the unique
transaction ID assigned to each DLSS transaction.

Up to five filter processes at a time can be active, although the module runs only
one active filter at a time; the other four are dormant, awaiting the semaphore
LD_ SEMAPHORE. The filter process is a batch file consisting of (1) a header
C-language program that gains ownership of the semaphore; (2) the filter programs,

10-4

which are written in AWK and SuperSort; and (3) a trailer C-language program that
releases the semaphore and sends a FILTERDONE message to the main C-language
event-handling process.

The actual filtering and sorting are done by a series of AWK programs and
SuperSort scripts. The SuperSort scripts inform the SuperSort software of the file
names, sort keys, and collating sequence. Generally, successive AWK programs,
upon recognizing a type of DLSS transaction, process and write it to an output file.
The main output file created by the filter process is C:\LD\VAL\<time-stamp>.VAL,
where <time-stamp> is the timestamp of the transaction file being filtered. An
error file, \LD\FILTER\ERROR.TXT, is also produced. Because of space limitations
and lack of high-capacity, removable media in the prototype LGN, this file is written
over each time the filter process is run.

For each transaction, the filter writes to the output file a unique ID, which
precedes the transaction. The transaction ID is a concatenation of the tilde character
("), the three-letter LGN name, and a sequence number. The sequence number is
incremented by one each time a transaction ID is formed and written. At the end of
each filter program, the current sequence number, which is the one applied to the
next transaction, is written to the file C\CFG\SERIALNM.CFG.

Generally, each transaction is distinguished by its Document Identifier
Code (DIC) field, located in the first three columns. If the transaction is determined
to be a single-card transaction, a transaction ID is written to the output file, followed
by the transaction. If it is a multiple-card transaction, more pre-processing, and
consequently more programs, are involved. For these transactions, the values of
other fields are used as qualifiers and keys to separate transactions and to sort
multiple card images within transactions for processing by the D2E translator.

The main event-handling process keeps track of outstanding filter processes.
Each is identified by the timestamp of the filtered file; the FILTERDONE message
includes this identifier to identify which process has been completed. At this point, a
TRANSDLSS message is formed and sent to the D2E translator module; also, the
unfiltered DLSS file is deleted.

10-5

Shutdown Procedures

For the most part, the LAN dequeuing module follows the standard prototype
LGN module shutdown procedures. Its one additional task is to cancel the semaphore
mailbox.

Serialization

Since the prototype LGN operates on a file of transactions, rather than on a
single transaction at a time, serialization would impose less severe decreases in
performance than it would if the LGN were truly a transaction-processing system.
Under the prototype conditions, the LAN dequeuing module is a good candidate for
serialization.

The LAN dequeuing module could be invoked following the download of a DLSS
file, and managing multiple filter processes would be unnecessary. If two or more
downloads occurred in rapid succession (which happens), the design should allow
more than one instance of the module to run simultaneously. The logic for assigning
serial numbers would have to be modified accordingly, to ensure that duplicate
numbers are not assigned.

Files

Two main files are processed by the LAN dequeuing module: the input file of
unfiltered DLSS transactions and the output file of filtered DLSS transactions. The
file ERROR.TXT contains card images considered by the filter process not to be part
of a transaction. In addition, several temporary files are used during the filtering of
multiple-card transactions.

DLSS-TO-EDI TRANSLATION MODULE

Purpose and Description

The DLSS-to-EDI translation module (D2E translator) performs the core LGN
function of translating transactions from DLSS into EDI format. The operating
context for this module is shown in Figure 10-3.

The translation module receives a TRANSDLSS message from the LAN
dequeuing module that specifies a DLSS file to be translated into EDI format and
triggers the module to process all transactions in that file. The translation logic that

10-6

DLSS Translation
transactions tables

LAN D2E WAN
queuing translator queuing

Filtered DLSS Error
transactions transactions

FIG. 10-3. MODULE FOR DLSS-TO-EDI TRANSLATION

drives the module resides primarily in tables designed by LMI, using Paradox
structures and syntax. Some supplemental logic, in the form of frequently used
utility routines, is incorporated in the translator module itself.

The translator is a C-language program that reads the translation rules from
the tables at module start-up and compiles them into an internal “portable-code”
(P-Code) abstract stack machine format. An abstract stack machine uses a set of
pseudo-machine-language instructions that can be evaluated by an abstract stack
machine. The language constructs of the translation tables are simple compared to
those of a conventional programming language (like C, for example), keeping the
abstract stack machine fairly uncomplicated. However, the syntax is not trivial; as
the apparent data interrelationships and cross-references used to specify the
translation process become more complicated and numerous, the sophistication of the

10-7

table logic increases proportionately. The translation P-Code is stored entirely in
memory, greatly increasing the performance of the translator in comparison to that
which would be obtained by accessing the translation logic directly from the tables.
The utilities YACC and LEX are used to build the compiler.

The translation tables are converted to P-Code by using an incremental
compiler. In theory, this process provides the capability to revise one portion of the
logic or add a new rule without having to recompile the entire set of tables. During
the prototype test, however, the mechanisms for notifying the program of the
particular translation logic revisions have not been developed. Therefore, when a
change to the translation tables takes place, the translator reloads the entire set of
tables and recompiles all the logic rules.

Start-Up Procedures

The D2E module is a single C-language executable process. At start-up, the
module performs the standard module start-up procedures. Once those procedures
are accomplished, the translation tables are loaded into memory and converted to the
internal P-Code format. Because of the added workload shouldered by the translation
module during the Initialization State, its start-up time is significantly longer than
that of other modules (except the EDI-to-DLSS translation module): up to 3 minutes
on a Compaq 386/20 with a disk cache.l The length of time to complete start-up
procedures is determined by the number of records in the translation tables.

As usual, the module uses its expedited mailbox as the vehicle for receiving
messages. The low-priority mailbox is not opened and consequently is not used. In
contrast to the other modules in the LGN, the D2E module does not read any module-
specific parameters during start-up. All information required by the module is either
hard-coded, passed through parameters in messages, or implied.

1These times are based on a “fully loaded” LGN; i.e., an LGN with 11 or 12 processes all
initializing at the same time. A stand-alone version of the translator, built expressly for LMI
translation table development and analysis, yields much quicker times: approximately 30 seconds
with all other conditions equal.

10-8

Processing

The D2E module waits in the IPC queue for (1) a system message from SB or
(2) a TRANSDLSS message triggering a DLSS file translation. The translation itself
isdriven by the translation tables.

Frequency of Operation

This module is always running, but it is dormant until a message arrives for
processing.

Flow of Processing

The receipt of a TRANSDLSS message in the IPC queue starts a DLSS-to-EDI
translation of the file denoted in the message. The file is read one transaction (one or
more DLSS card images) at a time. The translation is driven mainly by the tables
DIC2TID and DLSS2EDI, with the EVALDLSS table playing an important
supporting role. The relationships among the translation tables are shown in
Figure 10-4.

The DIC2TID table provides the first step in translating a transaction. One or
more records in the DIC2TID table referencing a unique transaction identification
(TID) form a TID section. The first TID section record to be translated corresponds to
the DIC of the DLSS transaction found in the DIC2TID. Internal tables (in program
memory) map the TID section to the first DLSS2EDI record to use for translation of
the TID section.2 The DLSS2EDI table is essentially a step-by-step sequence of
instructions describing how to build an EDI transaction in terms of its ~omponent
segments and fields. The table is grouped logically by TID section. Each record entry
in the DLSS2EDI table corresponds to a conditionally3 created EDI field in the target
transaction.

The DLSS2EDI table also contains records that do not correspond to any
particular EDI element. These records are used to generate “side effects,” such as

2Remember that the tables are loaded into memory compiled, so all references to table records
are actually to internal representations of table records; likewise, all record positions resolve to
memory offsets.

3The {condition] field determines whether or not the EDI element will be created in the current
EDI segment; when condition is true, the EDI element created follows the rules in the [eval] field.

10-9

DIC2TID table

DicPattern Tid TidSect Find DIC :
crmsrcccamm-— em= smeccme=- PAA
P9 [ABCDEF) 558 1 ::g
P2 (AB]) 559 1 p .
PABE] [AB]|P[BE]1 561 1
P [ABE] [CD} 561 100 -
System Transactions
P [ABE] [EFH) 561 100 function
P (ABE] [GH] 561 210
find DLSS2ED! table
Tid STe':t ::: S[:g Condition Eval)
se1 1 0 dum /[Matches(RP(CurrentCard, 1,3)/PABIP [BE] [AB]) Exit()
561 1 0 dum Matches (RP(CurrentCard, 1, 3),/PA [BE] 1) Pl: =1
561 1 0 dum RP(CurrentCard, 1,3) = “PAA" IBA: = 1
561 1 0 dum Found: = FindCard(/ ,Forward,CurrentCard, 1,3 PA: = Found
561 1 0 dum PA and (Found: = PB: = Found
< FindCard(/PABE]O/, Forward,CurrentCard, 1,3, RP(PA, 4, 19,4,
19))
Not PA and (Found : = PB: = Found
FindCard(/P{BE]B/ ,Forward, CurrentCard, 1, 3))
PB and (Found : = PB2 : = Found
FindCard(/P[ABE]B/, Forward, PB + 1,1,3,RP(PB,4,40),4,40))
\ DLSS.DIC
Matches{RP(CurrentCard,78,2) /10-3] [0-9] /) ransDate

Find DLSS symbol
~EVALDLSS table

Condition Start Length

DLSS.IsDZK Default CurrentCard 54 3

DLSS.IsDZG condition CurrentCard 57 3
CurrentCard 1 3

Found: = Found 1 3

‘ FindCard(/PABI|P [BE] [AB] |P{ABE] [DF)|PV([24)
i / Forward,CurrentCard, 1,3)
L— — _ —

FiG. 10-4. TABLE INTERACTION FOR DLSS-TO-EDI TRANSLATION

10-10

assigning a value to a user-defined variable or exiting from the current section. The
segment sequence number in these records is always zero.

The translation proceeds through the DLSS2EDI rules, building EDI segments
according to the DLSS2EDI rules specified for that section an element at a time, until
it reaches the last DLSS2EDI record in the section. At that point, the program
returns to the DIC2TID table for another TID section to translate, repeating the
translation loop until no unprocessed TID sections remain.

How does the EVALDLSS table fit in? In the [condition] and [eval] fields of the
DLSS2EDI table, references are made to logical names, which roughly equate to
fields in a DLSS transaction or to EDI elements. These logical names are essentially
the atomic units of the translation ruies, and they are defined in the EVALDLSS
table. The logical names themselves may be defined in terms of conditions and
further transformations, referring as necessary to other logica! names. The
translation rules for EDI elements can be quite complicated.

If the translation of a transaction fails, the segments produced up to that point
for the transaction are written to an error file.

If at least one transaction from the file is translated correctly, a DISPATCHEDI
message is sent to the WAN queuing module.

SUSPEND messages are handled in the usual way. A RESTART message
signals a transition out of the suspended state, and before re-initializing, the module
frees all memory associated with internal representations of the translation tables.

Data Structures

Several aggregate data types associated with the translation module relate to
the compiler and the execution engine for compiled code: symbol tables, parse trees,
the evaluation environment, and page tables for input and output data.

Two symbol tables are maintained for the translator: a DLSS evaluation table
and a system symbol table. The DLSS evaluation table is the internal representation
of the logic defined in the translation table EVALDLSS. The C-structure of this
entity is shown in Figure 10-5. The table contains information derived directly or
indirectly from the translation table: the symbol name (pszName), the symbol’s
internal type (tType) and type as presented in the Paradox table (cType), a pointer to

10-11

the P-Code that evaluates it (codEval), and the length of the P-Code (wCodeLen).
Since the DLSS symbol is re-evaluated every time it is referenced, its most recent
value is not stored in the symbol table; rather, the rules for its evaluation (i.e., the
pointer to its P-Code) are stored.

typedef enum tagTYPE
(

eVoid /* Notype */
.einteger /* 16-bitinteger */
,eString /* String */
,eBoolean /* Boolean (integer) */
,eRegex /* Regular expression */
.eTypeCount 1* # of types */

typedef struct tagDLSS _SYMBOL

char *pszName; /* Symbol name */
TYPE tType; /* Datatype */
char cType; /* Type as coded in data base */
PCODE codEval; /* Evaluation P-Code */
WORD WCodelen; /* Length of P-Code */

}DLSS_ SYMBOL;

F1G. 10-5. EVALDLSS SYMBOL TABLE ENTRY

Similarly, the translator maintains an array of entrics representing records in
the DLSS2EDI table. Each D2ETRANS entry corresponds to a rule for conditionally
including a particular EDI element. The fields in the D2ETRANS table correspond
closely to field counterparts in the DLSS2EDI table. The D2ETRANS entries are
grouped together by TID section into a larger DLSS2EDI structure. The structure for
these entities is shown in Figure 10-€.

The language that captures translation logic (as contained in the fields
[EVALDLSS -> Condition], [EVALDLSS -> Transformation], [DLSS2EDI ->
Condition], and [DLSS2EDI -> Eval)) is dubbed TransLog. As computer languages
go, TransLog is uncomplicated, but not trivially so: (1) it has few data types and few
operators; (2) symbols scope either to a TID section or are global; (3) it allows for a
maximum of 20 run-time declarable variables, all of which are of type integer; and
(4)it is strongly typed — each symbol has exactly one type, which is declared
explicitly. The type of each DLSS symbol is declared in the EVALDLSS data base
and is mapped to an internal type during start-up. The types supported in the data

10-12

typedef enum tagD2ETRANS

WORD wSegSeq; /* Segment seq number */
char aszSegld[kwTR MaxSegIDSz + 1];

~ /* Segmentid */
WORD wSegUse; /* Segment use # */
WORD weEltSeg; /* Elementuse # */
WORD wOutputSection;

/* Output section */

PCODE codEval; /* Evaluation P-Code */
WORD wCodelen; /* Length of P-Code */
} D2ETRANS;
EXTERN struct tagDLSS2EDI
{
WORD wrTid; /* Transaction ID */
WORD wrTidSect; /* TID section */
WORD wNumrecs; /* Number of D2ETRANS */
D2ETRANS *recTranslation;

/* Trans. records */
} garecDlss2Edi{kwTR__MaxNumTidSects];

FIG. 10-6. DLSS2EDI TABLE ENTRY

base and their internal equivalents are shown in Table 10-1. The compiler enforces
strict typing.

TABLE 10-1

DATA TYPES IN EVALDLSS DATA BASE

2:;2 t:|aasge Data base type Sym?:‘l’:able
A Alpha eString
U Untrimmed alpha estring
L Logical eBoolean
D Date eString
N Numeric eString

The DLSS evaluation table is an array of objects such as those in Figure 10-5. It
is loaded at start-up from the EVALDLSS table. The load process is actually a
two-pass compiler and code generator that builds the P-Code for each function.

10-13

Where a field representing different conditions contains multiple translation table
records, they are collapsed into a single table entry, and multiple table records are
represented as different blocks of code within the P-Code. The subfield codEval,
within the table entry, points to an array of P-Code entries associaied with the
EVALDLSS symbol. The D2ETRANS table is loaded in similar fashion.

The P-Code is generated during the compiler’s second pass. (Other subfields of
the EVALDLSS symbol table entries are resolved during its first pass.) The generic
structure of the code is:

typedef struct tag <structure__name>

{
BYTE opCode;

<some-type> <hungarian__prefix>Operand
} <structure-name>;

where:

® <structure-name> is the mnemonic representing the structure for a
particular type of P-Code instruction (e.g.,
STRING__OPERAND__INSTRUCTION).

® <some-type> is either char, BYTE, int, WORD, REGEX__ CODE (regular
expression code, also compiled), STRING, or FUNC (pointer to a system
function).

® <hungarian-prefix> is the Hungarian notation prefix corresponding to the
variable type named in <some-type>.

Generally, a line of code consists of an instruction and an operand. From the
structure, it can be seen that the operand can be any one of seven types, depending on
the nature of the instruction. The uses of these operands are illustrated below.

Table 10-2 contains a list of the instruction set supported by the abstract
machine,4 along with a brief functional description. P-Code for an EVALDLSS
symbol consists of streams of these instructions generated by the code generation
pass of compilation during translator initialization. codEval points to the beginning
of this stream of P-Code instructions.

4A P-Code entry for an abstract stack machine is analogous to a machine instruction for a true
machine.

TABLE 10-2

P-CODE INSTRUCTION SET
Instruction Operand type Description

Pop none Discard the top value on the stack and decrement the stack pointer.

Push WORD Push the operand value onto the stack.

PushString STRING Push the length and address of the operand onto the stack.

PushRegex REGEX Push the address of regular expression P-Code onto the stack.

Copy none Copy top value of stack onto the position * 1 beyond the top,” which
becomes the new top.

Calls FUNC Call the system function pointed to by the operand.

Caliv WORD Recursively evaluate the P-Code entry for the DLSS value whose index s
equal to the operand value.

Lval WORD Pop the value on the top of the stack to the system variable whose index
is equal to the operand value.

Rval WORD Push the value of the system variable whose index is equal to the
operand value onto the stack.

€QString none Compare the string at the top of the stack with the string below it for
equality, pop the stack, and set the result (<0, 0, or >0).

WEString none Like EQString, except check for inequality.

EQ none Compare the integer at the top of the stack with the integer below it for
equality, pop the stack, and put the result on top of the stack.

NE none Like EQ, except check for inequality.

And none Perform a logical AND with the integer on the top of the stack and the
integer below it, pop the stack, and put the result on top of the stack.

Or none Perform a logical OR with the integer on the top of the stack and the
integer below it, pop the stack, and put the result on top of the stack.

S8PJump WORD Jump (advance the P-Code pointer) forward the number of bytes
specified in the operand. Also set the base pointer (used in jumps) to the
location in the P-Code following the SBPJump instruction.

Jump BYTE Jump forward the number of bytes specified in the operand.

JumpT BYTE If the top of the stack is true (non-zero), jump forward the number of
bytes specified in the operand.

JumpF BYTE If the top of the stack is faise, jump forward the number of bytes
specified in the operand.

Jumpl BYTE Jump forward the number of bytes specified by the local variable whose
index in the local variable array matches the operand value.

JumplT BYTE Like Jumpl, except the jump is conditional on the top of the stack being
true.

JumplF BYTE Like Jumpl, except the jump is conditional on the top of the stack being
false.

Not none Perform a logical NOT on the integer on the top of the stack.

NOP none No operation.

Inc WORD Increment the DLSS symbol whose index is equal to the operand value.

Plus none Add the integer on the top of the stack to the integer below it, pop the
stack, and put the result on the top of the stack.

Minus none Add the integer on the top of the stack to the integer below it, pop the

stack, and put the result on the top of the stack.

10-15

Expressions in TransLog are built up from references to EVALDLSS functions,
user-defined variables, and system primitives. User-defined variables are simply
identifiers in a TransLog expression that are not a reference to an EVALDLSS entry
or a system function. The compiler considers them to be integers, implying that they
can be also be used as Boolean. Their values are cleared at the start of a new TID
section translation.

System primitives are functions or variables; they are stored in the system
symbol table and are initialized during start-up. The number of system functions has
grown gradually throughout the prototype test; the complete list of system functions
at test end is listed in Appendix B. There are two kinds of system symbols:
(1) variables, including those whose value is constant and those whose value can
change during a translation, and (2) functions that transform or retrieve some value.
The functions can be thought of as similar to EVALDLSS symbols, except for two
factors:

® System functions can have parameters.

® System functions have actual compiled C-language code underlying them,
not P-Code.

The system function table is needed for the compiler to recognize valid system
function names, validate the numbers and types of parameters for a system function
call in TransLog, and connect the call to the run-time routine at code-generation
time.

The system symbols stored in the system table have their own structures.
Figure 10-7 shows the C-language structure for system-table symbol entries.
Symbols in class eFunction are evaluated by executing the function pointed to by
fnFunction. Symbols in class eVariable store their current value at vValue. The
symbol table consists of an array of symbol table entries.

A second significant data structure for the compiler is for parse trees. Parse
trees are generated by the syntax checker of the compiler. They represent
derivations of expressions from the syntax rules of TransLog. TransLog statement
parsing will be handled by the inherent capabilities of YACC, the compiler
generator.

10-16

typedef enum tagSYM_ CLASS

eFunction A
,eVariable /™"
}SYM_ CLASS

typedef struct tagSYs_ SYMBOL
{

char *pszName; r*
TYPE tType; "
SYM CLASS scClass; I*
BYTE byNumParams; *
BYTE byMaxNumParams: /*
BYTE byTuplLeSize; r”
BOOL bisPrimitive; *
BOOL bisScopedToTransaction;

/*
TYPE *ptParamType; *
VALUE uValue; "
FUNC fnFunction; "

}SYs_SYmBoL

Symbol is function
Symbol is variable

Symbol name

Data type

Function or variable
Number of fixed params
Max number of params
Repeat param group size
Always Yes in prototype

Reset to zero?
Array of param types
Current value
Code for function call

*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

FIG. 10-7. SYSTEM TABLE ENTRY AND RELATED STRUCTURES

A third major set of data structures is the execution environment, containing

A global execution stack
® A stack pointer

® An instruction pointer

® A call walk-back.

The global execution stack is simply an array of type integer. The stack pointer is the
current position in the stack; it is initialized to zero. The instruction pointer
references the P-Code instruction under current evaluation; it is initialized to the
symbol’s codEval field at the start of P-Code evaluation for a symbol. The call
walk-back is an array holding a pointer to the current symbol table entry, as well as
pointers to all DLSS symbols referenced recursively during P-Code evaluation. By
way of the DLSS symbol entry codEval subfield, the call walk-back array points to all

P-Code entry pointsin the call stack.

The translation module also uses a set of data arrays to map DLSS images, page
table entries, and file locations to each other. A similar array maps EDI segments to

10-17

file locations. Because DLSS transactions can be hundreds of card images in length
and the amount of memory to store a DLSS transaction is limited, images pertaining
to the current transaction are brought in as needed; the program allocates space for
the 100 most receutly used images. The following data items and structures are used
in DLSS card-image mapping:

gaiDlssSwap2CardMap[] maps page table entry to card number

garecDlssCard2File|] maps card number to page table entry and to input
file location

gapszDlssCardSwap(] array of buffers, each of which holds the card image
associated with a particular page table entry.

The structure garecEdiSeg2FileMap maps EDI segments to output file locations.
Actually, the EDI segments are written temporarily to a sort file before being written
to the EDI output file.

Algorithms

The translator module makes significant use of algorithms. These are discussed
as they apply to the EVALDLSS symbol table, in particular, and, in much the same
way, to the D2ETRANS array entries.

Overview of Compiler Processing. The compiler loads the EVALDLSS table
into memory in two passes. The first pass populates the internal EVALDLSS symbol
table with all the field names in the data base. All the subfields for each symbol table
entry are filled in except for codEval. In the second pass, code is generated for each
entry; the codEval subfield for the entry points to the allocated space for the code.

In the second pass, each symbol is compiled in two phases. First, a lexical and
syntactical analysis is performed to generate a parse tree from the TransLog code for
the symbol. If any symbol fails lexically or syntactically, the compile fails and the
program aborts. For symbols that have more than one record in the translation
EVALDLSS table, the records are collapsed as follows:

[Condition]1:\n[Transform]1;\n[Condition]2:\n[Transform]2;\n...
...[Condition]n:\n[Transform]n.

10-18

where different conditions and transforms represent successive data base records for
the same symbol5 and \n represents the “new line” character. Such a statement is
interpreted as executing the transform that follows the first true condition. A null
condition is interpreted as true, while a null transform is interpreted as no transform.

Lexical Analysis. Lexical analysis is performed by a finite stack machine in
C-language generated by the LEX utility. The TransLog grammar used for LEX is
shown in Figure 10-8 in Backus-Naur form. Note that the grammar is not
case-sensitive; all names are converted to upper case by the lexical analyzer. Also
note that EVALDLSS name references are of the form DLSS.name, but only name is
stored as the identifier name in the EVALDLSS symbol table.

Syntax Analysis. The syntax analysis phase generates a parse tree using the
facilities of YACC. Each major production in Figure 10-8 is augmented with
semantic rules6 for generating a parse tree node. The resulting grammar is processed
by YACC to produce a compiler that generates a parse tree, which subsequently is
the input to the code generator.

Additional semantic checking is also done during the syntax analysis phase. As
code is generated to put system function parameters on the stack, their type is
compared with the required type for that position’s parameter. Similarly, the type of
each Boolean or comparison operator is validated to ensure Boolean or string types. If
type checking fails, the compile fails and the program aborts. In addition, the syntax
checking phase makes sure that limits are not exceeded for the number of
instructions on the stack or the number of local variables; if the limits are exceeded,
the compilation aborts.

The semicolon following a condition expression is treated as a label for P-Code
branching on true, and the semicolon after a transform as a branching label for false.
In this way, during evaluation of the P-Code, the translator executes the transform
code if the condition is true but branches to the next condition or the end of the
P-Code if the condition is false.

5This collapsing does not take place for D2TRANS entries. Each D2TRANS codEval subfield
points to one condition-transformation pair (each member of which can be null).

6The parse tree is generated in post order so that infix expressions (e.g., 9-5+2) are converted
to postfix (e.g., 952 +-).

10-19

program = case_ block .
case_ block = case _expr|case_vlock';' case__expr
case expr = condition’:’ expr list
expr list = expr!expr list"expr
expr = ‘NOT expr!'("expr‘)’ !variable ! INTEGER!
func call
- luser__calllREGEX|STRING__LITERAL{'INC’ ’(’ expr *,’
| compare__expr | bool _expr | arith__expr | assign__expr
[Note: Inthe previous line, the expressions are interpreted as a single term within a larger

expression.]

STRING LITERAL

rs (\. : [-\.)* y

REGEX — A\ W)k

user call USER NAME maybeparen
maybeparen) Te

USER NAME ‘DLSS.’ letter (letter | digit | national)*
national [#$%?]

digit [0-9] —

Letter [a-2A-Z]

condition 'CASE’ expr list | '‘DEFAULT’

param list nonull param list!e

nonull” param list
compare expr

expr | nonull__param_list *," expr
expr’="'expr|expr'<>’expr

bool expr expr ‘OR’ expr | expr 'AND’ expr
arith _expr exp ' +'expr!expr'- expr
assign expr expr’: =’ expr

func “call SYSTEM NAME ‘(' param list’)’
variable SYSTEM™ NAME -

SYSTEM __NAME

letter (letter ! digit | national)*

FIG. 10-8. TRANSLOG GRAMMAR

Code Generator. The parse tree generated by the syntax analyzer converts to
P-Code on the basis of the semantic action directives added to the TransLog
productions. An array of buffers is built to hold the resulting code for all symbols.
When code generation for a symbol is complete, the code is copied to a buffer,
referenced by the symbol’s codEval bucket.

The code generator passes the parse tree in a post-order traversal, emitting code
for the major productions defined in the TransLog grammar. Generally, string or
integer expressions determine whether (1) parameters for a system function call,
(2) operands of a comparison, or (3) assignment operators are pushed onto the stack.

10-20

Expressions cause labels to be back-fitted and operator code to be generated. A
feature of the compiled code is that a comma in an expression list pops all stack
values off the stack. Thus, expression values appearing before a comma are
completely independent of those appearing after it. The execution engine is
responsible for popping values off the stack when a system function is called.

Execution Engine. The execution engine evaluates condition-transformation
pairs in the EVALDLSS and DLSS2EDI tables. It is called with the C function

void vExecute (register PCODE pcCode).

It may be called (1) directly from the translator, when the translator is
navigating through the DLSS2EDI table or (2) recursively from P-Code, when an
expression refers to an EVALDLSS symbol. It returns (via the execution stack)
integer, string, or pointer to regular expression code, depending on the nature of the
expression evaluated.

At the top-level call to vExecute, there is a global execution stack (as explained
earlier under the topic of Data Structures) that is visible to all recursive functions of
vExecute and to the code associated with system symbols. The evaluation uses this
global execution stack to execute string compares and Boolean operations according
to the P-Code. Code for calls to system functions is generated so that the correct
number and types of parameters for the function are placed on the stack.

Producing Interleaved Output. The correct order of segments in an output EDI
transaction is not necessarily the same as the order of the segments in the DLSS2EDI
table. Information about each EDI segment produced is kept in the structure
garecEdiSeg2FileMap:

struct tagEDI_FILE MAP

{

WORD wCreationOrder; /* Orderin which created */
WORD wOutputSection; /* Composite loop indicator */
WORD wL1; /* Outer loop counter */
WORD wl2; /* Innerioop counter */
long ILoc; I* Offset positionin file */

} *garecEdiSeg2FileMap;

(The fields wL1 and wL2 are not used in the current system.) Each EDI
segment created during translation of a transaction is written to a sort file. For each
of these segments, a garecEdiSeg2FileMap entry is updated to reflect sort

10-21

information and sort file positicns. After the last transaction segment has been
created and written to the sort file, the set of segments making up the transaction is
sorted by output section and creation order (within output section) and written to the
EDI output file.

Shutdown Procedures

Upon receipt of a SHUTDOWN message from SB, the D2E translation module
follows the standard prototype LGN shutdown procedures.

Serialization

Since this module responds to the TRANSDLSS message in particular, and the
TRANSDLSS message is sent only by the LAN dequeuing module after that module
has filtered a file of DLSS transactions, the DLSS-to-EDI translation module could
execute serially after the LAN dequeuing module. This arrangement would not be
suitable for a true transaction-processing environment.

Files

The D2E translator uses several files during the course of processing:
® Translation tables

» DIC2TID Maps from a regular expression describing a set of DICs to
the matching TTD section. This is the first table referenced
ior any transaction translation.

»p EVALDLSS Defines how values for logical names are derived in a DLSS
transaction.

» DLSS2EDI Contains conditions and instructions for building an EDI
transaction, one element at a time, for all segments
making up the transaction. Refers, in the conditions and
transformation of EDI elements, to the logical names in
the EVALDLSS table.

» CODEMAP Provides table look-up for certain elements, by mapping
between DLSS field values and corresponding EDI element
values. Unlike the other tables, CODEMAP is currently
not read at module start-up, but is referenced as needed
during translation.

10-22

@ Textfiles

» DLSSInput A file of filtered DLSS transactions, referenced in the
TRANSDLSS message from the LAN dequeuing module.
The complete path name for the file is C:\LD\VAL\<time-
stamp>.VAL, where <time-stamp> is the timestamp
assigned to the file when it was downloaded by the local
interface module.

» EDIOutput The file of EDI transactions resulting from the transaction.
The full path name is C:\DE\VAL\< time-stamp >.VAL.

» ErrorFile Any transactions that the module is unable to translate
are written to the error file. For each transaction in the
file, all segments up to the one in error are written, along
with an error message and a description of the EVALDLSS
symbol that was most recently evaluated. The full path
name for the error file is C:\DE\ERR\< time-stamp> ERR.

Alternative Designs

The present design of the translator has created a reliable module with more
than adequate performance for the prototype system. The fact that translation rules
are compiled at run time yet reside in a full-featured data base management system
(DBMS) allows ample translation speed and reasonable ease in changing translation
rules. Results of field testing the translator during the course of the Phase III test
prompt the following suggestions for design modifications and alternative
implementations:

® True transaction processing. This would not require a significantly large
change to the translator. Translation strategy would not need to change but
would just be exercised on a single-transaction basis instead of a file of
transactions.

® Hard-code constant translation rules. Moving some or all of the translation
rules into the actual C-language program could optimize performance and
eliminate the amount of compilation required during program start-up. On
the other hand, the added value and ease of use of the DBMS facilities would
be lost.

® Object-oriented constructs. Given the number of aggregate data types
explicitly defined within the module and implied? by the data, the translator
would appear to be a good candidate for object-oriented methodologies. In

TThis is especially the case for EDI formats, where transactions are built up hierarchically from
elements, segments, and loops.

10-23

the same vein, the EVALDLSS table is essentially a table of objects and
associated rules on how values for the objects are formed. Using object-
oriented constructs might also cut down on the profusion of system functions
designed to handle unique combinations of data formats.

WAN QUEUING MODULE

Purpose and Description

The WAN queuing module responds to DISPATCHEDI messages from the D2E
translator module. It compresses the EDI file named in the message and sends a
SENDEDI message to the WAN interface module. The compression is done via a
separate batch file process (referred to as the ARC process) that invokes a PKARC
compression program. The context for the WAN queuing module is shown in
Figure 10-9.

D2E WAN WAN
transiator queuing interface

Archive batch
process

Compressed
EDI
transactions

EDI
transactions

FIG. 10-9. WAN QUEUING MODULE

Start-Up Procedures

This module performs the normal module start-up sequence and some
additional steps in preparation for invoking the ARC process during the Operational
State. The parameters in Table 10-3, which does not include standard systemwide
parameters, are read during start-up.

As part of its start-up procedure, the WAN queuing module forms the PIF name
for the ARC process by concatenating (1) the PIF directory SY__PIFDIR, (2) the ARC
process mnemonic WQ__ ARCMNEM, and (3) the character constant “PIF.DVP.”

10-24

TABLE 10-3

WAN QUEUING START-UP PARAMETERS

Parameter Description

DE__VALROOTDIR Directory where outbound ED! files reside

SY_ PIFDIR Directory containing PIFs

WQ_ QUEUEDIR Directory where outbound compressed EDI files are stored

WD__ STAGE1DIR Directory (on remote machine) for inbound EDI compressed files
WQ_ ARCMNEM Two-letter mnemonic for ARC process (used in building PIF name)

Next, the module reads the PIF contents into memory and overwrites a few of the PIF
fields to control the ARC process screen behavior.

The module uses the expedited mailbox for normal message processing and the
system mailbox for receiving SB messages. In addition, a holding mailbox,
WQ__HOLD, stores messages to read while the main event-handling process awaits
completion of the ARC process.

Processing
Frequency of Operation

The main process of the WAN queuing module is always running. Normally, it
isin a wait state, awaiting the arrival of a DISPATCHEDI message in the IPC queue.
The ARC process, invoked in response to the DISPATCHEDI message, compresses
the file, notifies the main process that it has done so, and quits. It is invoked as a
new, temporary process each time it is neec=d.

Flow of Processing

As noted above, the program is normally in a wait state, awaiting arrival of a
DISPATCHEDI message in the IPC queue. When a DISPATCHEDI message does
occur in the queue, the module confirms that the file referenced in the message exists.
Then, by concatenating a base-36 timestamp, a one-digit qualifier, a period, and the

10-25

three-letter mnemonic for the LGN, it forms a unique name8 for the file to be formed
by the ARC process. The combination of the LGN-unique timestamp and the LGN
qualifier, which is unique across LGNS, precludes receiving two EDI ARC files with
the same file name.9

After the ARC file name is formed, the main process invokes the ARC process to
compress the file. The ARC process is a batch file containing the PKARC program,
followed by a C-language program that sends an ARCDONE message to the main
process. The ARCDONE message contains a return code indicating the success or
failure of the PKARC execution. The return code is based on the DOS error level set
by PKARC.

Once the ARCDONE message is received, the module builds a SENDEDI
message and sends it to the WAN interface module. The SENDEDI message contains
the full path name of the ARC file to be sent and the destination path name for the
file when it is received by the remote LGN.

While the main process awaits an ARCDONE message, it moves any other
message received during that time to a holding mailbox. All messages sent to the
holding mailbox are removed from the IPC queue by the process; if they were not, the
queue would report a message in the holding mailbox and the program would keep
reading the same messages over and over. When the process resumes servicing the
IPC queue after receiving and processing the ARCDONE message, it checks for
messages in the holding mailbox first.10

8Note that an ARC file consists of one or more compressed files that are bundled into one ARC
file. The file names of the compressed files are retained, but the ARC file has a name of its own, not
related to the names of the embedded compressed files.

9What about duplicate EDI translation file names? Since EDI file names are not gualified by an
LGN name extension, is it possible for an LGN to receive two EDI ARC files, each containing a
compressed file identically named? Currently, the answer is “yes,” because of name-length
restrictions. In the prototype system, a work-around was devised, using an additional qualifier, to
ensure that all received EDI files have unique nams. This should not be a problem in a production
system running under UNIX, with its longer file names.

10This approach would be unsuitable for a production LGN. For instance, what happens if the
ARC process hangs and an ARCDONE message is never sent to the main process? During the
prototype system test, this has not occurred, but a production solution should be devised to preclude
such occurrences.

10-26

Data Structures

The PIF structure (Figure 7-4) is used to invoke the ARC process. No other data
structures are maintained by the WAN queuing module.

Shutdown Procedures

Upon receipt of a SHUTDOWN message from SB, the WAN queuing module
follows the standard prototype LGN shutdown procedures.

Serialization

The WAN queuing module is an intermediary between the D2E translator
module and the WAN interface module, called on to perform only after the D2E
translation module has translated a file of DLSS transactions. The module is
suitable to be invoked serially after the D2E translator. In this scenario, it would
still run in parallel with the WAN interface module.

Files

The WAN queuing module takes an input file of valid EDI transactions and
produces an output ARC file containing the EDI file in compressed form.

Alternative Designs

The present design of the WAN queuing module has worked satisfactorily for
the prototype, file-based system. For a production, transaction-based system, the
WAN queuing module must bundle transactions with common priorities and
destinations. The bundled files will be compressed and a message sent to the WAN
interface module, bearing in mind that high-priority transactions cannot be detained
by lower priority transactions. As indicated by the processing flow, the module must
be capable of receiving new transactions concurrently while compressing others.

WAN DEQUEUING MODULE
Purpose and Description

In the receiving LGN, this module is a peer process of the sender’'s WAN
queuing module. Its primary job is to expand (decompress) EDI files received by the
WAN interface module and notify the EDI-to-DLSS translation module that the
expanded file is ready for translation. In many respects its processing is analogous to

10-27

that of the WAN queuing module. The context for the WAN dequeuing module is
shown in Figure 10-10.

D2E
translator

WAN WAN
interface 7| dequeuing

Compressed Unarchiving Uncompressed
EDI batch process EDI
transactions transactions

FIG. 10-10. WAN DEQUEUING MODULE

Start-Up Procedures

The WAN dequeuing module’s start-up procedures are very similar to those of
the WAN queuing module. In addition to the standard start-up sequence, the module
forms a PIF name for the unarchiving process, reads into memory the PIF by that
name, and overwrites certain fields within the PIF structure.

The expedited mailbox is used by the module for normal message processing.
The system mailbox receives SB messages. A holding mailbox, WD__HOLD, holds
messages received during file expansion by the unarchiving process.

During start-up, the module reads the parameters listed in Table 10-4 (which
does not include standard systemwide parameters).

Processing
Frequency of Operation

This process is always running. Normally, it is in a wait state, awaiting the
arrival of an RCVDEDI message from the WAN interface module.

10-28

-

TABLE 10-4

WAN DEQUEUING START-UP PARAMETERS

Parameter Description
SY__PIFDIR Directory containing PIFs
WQ__QUEUEDIR Directory where outbound compressed EDI files are stored
WD_ STAGE2DIR Directory for inbound EDI compressed files
WQ_ ARCMNEM Two-letter mnemonic for ARC process (used in building PIF name)
Flow of Processing

The main work of the WAN dequeuing module is to await an RCVDEDI
message pointing to an ARC file, expand the component EDI file, and notify the E2D
translator module via a TRANSEDI message. Upon detection of an RCVDEDI
message in the IPC queue, the module invokes the unarchiving process through a PIF
structure. Like the ARC process in the WAN queuing module, the unarchiving
process is a batch file that calls the program PKXARC. Following PKXARC in the
batch file is a small C-language program that sends a message to the main process
indicating that the file expansion has been completed.

Although in the prototype implementation there is just one EDI file per ARC
file, the WAN dequeuing module does not make this assumption. For each expanded
EDI file, the main process forms and sends a TRANSEDI message to the
EDI-to-DLSS translation module. The module deletes the ARC file after processing
it. Operating in a fashion similar to the WAN queuing module, the WAN dequeuing
main process transfers all incoming messages to the holding mailbox during its wait
for an UNARCDONE message from the unarchiving process. After processing the
UNARCDONE message, when it returns to servicing the IPC queue, it checks the
holding mailbox first for messages.

Data Structures

The PIF structure (Figure 7-4) is used to invoke the ARC process. No other data
structures are maintained by the WAN dequeuing module.

10-29

Shutdown_Procedu res

Upon receiving a SHUTDOWN message from SB, the WAN dequeuing module
follows the usual prototype LGN shutdown procedures.

Serialization

The WAN dequeuing module could run as a transient, serial module, invoked
after receipt of an EDI ARC file.

Files

The module processes incoming ARC files containing EDI files in compressed
form. Its output is the expanded EDI file, placed in the directory CA\WD\QUEUE.

Alternative Designs

For a transaction-based production system, the WAN dequeuing module would
be required to recognize and read, one at a time, the transactions making up the EDI
files and send the proper message to the E2D translator.

EDI-TO-DLSS TRANSLATION MODULE

Purpose and Description

In a broad sense, the EDI-to-DLSS translation module (E2D translator) is a
mirror image of the D2E translator; its operating context is shown in Figure 10-11.
This module translates EDI transactions, a file at a time, into their equivalent DLSS
formats. The translation is triggered by the reception of a TRANSEDI message in
the IPC queue. As in the D2E module, the translation is driven by tables. The
purpose of the tables in the two translators is approximately the same, although their
makeup and use differ. The E2D translator uses the same TransLog grammar and P-
Code compiler as its D2E counterpart. Likewise, the E2D translator is a single C-
language program. In many other respects, the two translators closely parallel one
another. For these reasons, processes in the E2D translator that have already been
covered in detail in the DLSS-to-EDI Translation Module section, will not be
revisited here, except to highlight differences in design or operation.

10-30

EDI
transactions

E2D
translator

WAN
dequeuing

Compare file

Error
transactions

DLSS
transactions

FIG. 10-11. MODULE FOR EDI-TO-DLSS TRANSLATION

Start-Up Procedures

The E2D module start-up procedures are comparable to those for the D2E
translator, as is the time required for initialization. As in the D2E module, no
module-specific configuration parameters are read during start-up; all information
required for operation (1) is obtained through message parameters, (2) is hard-coded,
or (3)isimplied.

Processing

Predominantly, the E2D module is parked in the IPC queue in expectation of a
TRANSEDI message or a system message. Receiving a TRANSEDI message causes
the module to start a translation of an EDI file; again, translation is driven by the
translation tables that were read and compiled during start-up.

10-31

Frequency of Operation

This module is always running. During the Operational State, it is dormant
until an event is detected on the IPC queue.

Flow of Processing

The most significant message for the E2D module is the TRANSEDI message
sent by the WAN dequeuing module. The TRANSEDI message specifies the EDI file
to translate. EDI transactions are read one at a time from the input file. The
program determines the TID of the transaction from its start (ST) segment, builds a
template of segments and elements in memory, verifies that no required segments
are missing from the transaction, and determines the starting record number of the
EDI2DLSS table to use for the translation.

The module navigates through the EDI2DLSS table records associated with a
transaction’s TID, one record at a time. The EDI2DLSS table is analogous to the
DLSS2EDI table: it contains conditions and evaluation rules for each field in the
transaction. Each record in the table indicates a condition for adding a field to a
DLSS transaction and the required evaluation to produce the correct field value. The
evaluation is a reference either to an EDI symbol (in the EVALEDI table) or to a
TransLog expression. Each field may have more than one condition associated with
it, but one condition per EDI2DLSS record. The program continues reading recordsil
for a field until encountering a true condition or end of records. The EDI2DLSS table
does not have an explicit column designating an output DLSS transaction field;
rather, DLSS fields are implicitly defined by starting column and length. Sirce
DLSS transactions can contain multiple card images, the record also indicates the
card-image number for the transaction to which the field is written. Once a condition
for a field is evaluated as true, the program evaluates the EDI2DLSS table’s
[CardNo] field. That field is written to the appropriate card image and column
positions. After writing the DLSS field, the program reads EDI2DLSS records until

11As is the case with the D2E translator, keep in mind that “records” is a figurative term,; it
actually refers to P-Code record images.

10-32

encountering a start column for the DLSS field at least one greater than the last
column written, or until there are no more records for the current TID.12

As a validation measure in the prototype system, the original DLSS transaction
is included in the EDI transaction as a series of “XXX"” segments, one segment per
DLSS card image. After translating from EDI to DLSS format, the E2D translator
compares the XXX segments to the DLSS transaction just produced. Any
discrepancies in field values or number of card images are identified and written to a
compare file. If an error occurs that prevents completicn of translation, an
appropriate message and a list of the segments translated up to the point of the error
are written to an error file.

For remote LGNs, no message results from translating a file of EDI
transactions into DLSS format. Since, in the prototype, translated DLSS data are not
uploaded to the host, this marks the last LGN processing step for a file. The CLGN
implementation is handled differently, as will be discussed.

SUSPEND messages are handled by the E2D module in the same way that the
D2E translator handles them. Upon receiving a RESTART message, the module
frees all memory allocated for internal translation table representations and
re-initializes.

Data Structures

The E2D translator manipulates a set of data structures comparable to those of
the D2E translator: symbol tables, parse trees, the evaluation environment, and
paging tables. Because the data structures are so similar, only these aspects of the
E2D data that are different from the D2E environment are stressed.

The E2D module maintains two symbol tables: an EDI evaluation table and the
system symbol table. The system symbol table is created and used as for the D2E

12There are some exceptions to this searching criterion. For example, an EDI2DLSS record may
exist only to generate a side effect. As in the D2E translator, a side effect generates a system function
or assigns a value to a user-defined variable but does not affect any particular output field. Side-effect
records always have a value of zero in the (length) field. If a side effect results in generating a new
DLSS card image, the DLSS card image position is assumed to be zero. This ensures that the next
EDI2DLSS record pertaining to a DLSS field will be read (not skipped), since the start column for a
field specified in the table is always greater than zero.

10-33

translator. The set of system symbols for the E2D translator is somewhat different,
as shown in Appendix B.

The EDI evaluation table is the internal representation of the translation table
EVALEDI; its purpose is analogous to the DLSS symbol table in the D2E translator.
The C-structure of an EDI symbol table entry is shown in Figure 10-12.13 Whereas
the DLSS symbol table is basically a dictionary with instructions on how to calculate
the value for each field, the EDI symbol table primarily specifies where to find the
field in an EDI transaction. In contrast to the D2E symbol table, the P-Code for an
EDI symbol entry indicates only how to extract the EDI field. The wSegSeq and
wEltSeq subfields point to the segment and element (within the segment); the
evaluation of the codUseCtr subfield yields the segment occurrence numberl4 to
which the other subfields refer.

typedef struct tagEDI__SYMBOL
char *pszName; /* Symbol name(composite) */
WORD wSegSwq; /* Segment sequencenumber */
PCODE codUseCtr; /* P-Code for usecounter */
WORD weEltSeq; /* Element # in segment *
}EDI__SYMBOL;

FIG. 10-12. ED! SYMBOL TABLE ENTRY

Figure 10-13 shows the aggregate data structures associated with an
EDI2DLSS table entry. The one-to-many relationship between the EDI2DLSS and
E2DTRANS arrays is analogous to the DLSS2EDI-D2ETRANS relationship in the
D2E translator. The subfield *precTranslation in each EDI2DLSS entry points to a
set of E2DTRANS entries representing condition-transformation pairs for all fields
in the TID section named. In addition, the subfield *precEdiSegs points to an array of
EDISEGS entries associated with the EDI2DLSS record; the EDISEGS entries define
the EDI segments that make up the section and their maximum allowable number of
occurrences. For the current TID section, the EDI2DLSS entry also points to the

13The EXTERN keyword in Figures 10-6 and 10-13 is defined in the translator C-language
program as the word “external” for all functions except the one in which the structure is defined; in
that case, it is defined as the null string. This allows the function defining the structure to allocate
space implicitly for the structure and all other functions to share the same "include” file to refer to the
structure.

14There may be more than one instance of a segment in an EDI transaction.

10-34

parent, next sibling, and child sections.15 These pointers are used as navigation
guides during a translation. Figure 10-14 shows the relationships among the
EDI2DLSS, EDISEGS, and E2DTRANS tables.

typedef enum tagE2DTRANS

WORD wRecNo; /* Record # in EDI2DLSS */
WORD wsStart; /* Start position in card */
WORD wlength; /* Number of columns in card */
PCODE pcCode; /* Code to determine value */
PCODE pcCardNoCode; /* P-Codetodetermine card number */
} E2DTRANS

typedef struct tagEDISEGS
{

char aszQualName[kwTR MaxQualNameSz];

/*~ Composite name for table entry */
WORD wsSegSeq; I* Segment sequence number */
WORD wUseCtr; /* Segment use counter */
char aszSegld[4]; /* SegmentID */
BOOL bRequired; /* Segmentrequired? */
} EDISEGS;
EXTERN struct tagEDI2DLSS
{
WORD wTid; /* TransactionID */
WORD wrTidSect; /* TiD section */
Struct tagED2DLSS *precParentSect; /* Parentlioop pointer */
struct tagED2DLSS *precRtSibSect; /* Right-hand sibling pointer */
struct tagED2DLSS *precFirstChildSect; I* First child loop pointer */
WORD wNumTrans; /* Number of E2DTRANS */
E2DTRANS *precTranslation; /* Set of transaction records */
WORD wNumSegs; /I Number of EDISEGS */
EDISEGS *precEdiSegs; /* Segment template set */
WORD wSectOccurrences; /* # Occurrences encountered */
WORD wMaxSectOccurrences; /* Max # occur. for section */

} garecEdi2DIss[kwTR__MaxNumTidSects);

FIG. 10-13. EDI2DLSS TABLE ENTITIES

The E2D translator uses paging tables in a manner similar to their use by the
D2E translator, the main difference being that EDI segments, rather than DLSS card
images, are paged in.

15For instance, if the TID is 568 and the TID section is 110, the parent section is 100, the next
sibling section is 120, and there is no child section (there are no lower level sections).

10-35

Check for adherence to
segment order rules
ST*S61*DAS-
EDISEGS table 0000524408
RFL*PAA
Tid TidSect SegmentSeq MaxSecOcc UseCtr Req’'d Segmentid RFL*PAB
KAA*WO0010483
561 1 10 1 RFL KAB*1*J*A*B
561 1 20 PED
561 1 30
561 1 40 Transactions
561 1 50
EDI2DLSS table
Field Transformation

Side-effect , *
Record L
P1:=PA:=P8:=PB2:=0

PA : = CurrentCard

Not P1 and EDL.DIC1 = “PAA”

User-
defined
variable

P82 : = Found

EVALEDI
symbol!

Find EVALEDI symbol

EVALED! table
TidSect Field UseCtr ElementSeq Segmentld

#

#
561 1 DICY 10 1 1 RFL
S61 1 DIC2 10 2 1 RFL
561 1 DIC3 10 3 1 RFL
561 1 DPAS 60 FindUse (60,1,1,/05/) 2 REF

FIG. 10-14. TABLE INTERACTION FOR EDI-TO-DLSS TRANSLATION

10-36

Algorithms

The significant algorithms used in the E2D translator (P-Code compilation and
evaluation, segment paging) are similar enough to those used by the D2E translator
so that a separate discussion here is unnecessary.

Differences Between LGN and CLGN Implementations

The prototype CLGN models some key attributes of the production CLGN that
will reside at DAASO (see Chapter 2); specifically, after receiving EDI transactions
and translating them into DLSS format, it retranslates the DLSS transactions back
to EDIL. Thus, the EDI module in the CLGN, upon completing the translation of a file
of EDI transactions, sends a RCVDDLSS message to the LAN dequeuing module, as
if a DLSS file had been downloaded from the host. In the prototype case, however, the
DLSS file to be filtered is the output of the E2D translator, as specified by the
RCVDDLSS message.

Shutdown Procedures

Upon receipt of a SHUTDOWN message, the E2D module follows the standard
prototype LGN Shutdown State procedures.

Serialization

The E2D module could be positioned to run serially after the WAN dequeuing
module. However, this approach would not be suitable for a transaction-processing
environment.

Files

The following files are central to the processing of the E2D translator:
® Translation tables

» EVALEDI Defines how values for EDI logical names are derived
from an EDI transaction.

» EDI2DLSS Describes, for each TID section, the conditions for
inclusion and transformation of each candidate field
making up a DLSS transaction. References to the
EVALEDI table are made liberally.

10-37

» EDISEGS

» CODEMAP

® Textfiles
» EDIInput

» DLSS Output

» Compare File

» ErrorFile

LAN DEQUEUING

Contains the set of segments that make up an EDI
transaction and their respective attributes.

Provides table look-up for certain elements, by mapping
between DLSS field values and corresponding EDI
element values. Unlike the other tables, CODEMAY is
currently not read at module start-up but is referenced
as needed during a translation.

A file of EDI transactions, pointed to by the TRANSEDI
message. Analogous to D2E’s DLSS input file.

The primary output of the E2D translator. A file of
DLSS transactions having the same base name
(timestamp) as the EDI input file and the file extension
.VAL.

A file containing transactions that were translated
error-free but that differ from the XXX segment(s) of
the source EDI transaction. For each transaction that
has a compare discrepancy, the file lists the original
DLSS card images, the EDI segments, and the
retranslated DLSS card images, along with an
illustration of the differences.

A file containing EDI transactions and partially
translated DLSS trancactions for each transaction that
was halted because of an error. The full path name of
the file is C:\ED\ERR\< time-stamp> .ERR.

This module is not included in the prototype system.

10-38

CHAPTER 11
OPERATIONS SUBSYSTEM

The operations subsystem in the Phase III prototype LGN consists of three
modules:

® System boot (SB)
@ System monitor (SM)
® System utilities (SU).

SB is the entry point of the subsystem and also of the LGN. It keeps track of the
operational status of all other LGN modules. During LGN start-up, SB invokes the
other two operations subsystem modules, SM and SU. The overall structure and
context of the subsystem are shown in Figure 11-1.

SYSTEM BOOT MODULE
Purpose and Description

The SB module starts all the LGN processes that run continuously. Transient
processes are started by their respective parent modules when required. The SB
module invokes the overall LGN processing environment and ensures that all
necessary modules are started. It subsequently acts as the operator console until the
system is brought down.

Boot Procedure

The SB module starts automatically upon LGN start-up, via the Autoexec.Bat
file. The Autoexec.Bat file starts DESQview, which checks its script file,
Desqview.Dvs, for the presence of a script that is run automatically whenever
DESQview is invoked. On the prototype LGN, it is the !Auto script that starts the SB
module. Alternatively, the module can be invoked from the DESQview “Open
Window” menu (option SB in the prototype).

11-1

System System

monitor utilities

System boot

DESQview
Keyboard
interface
Other
modules
FIG. 11-1. OPERATIONS SUBSYSTEM
Processing
Frequency of Operation

The SB module is executed once when the LGN is powered up and again after a
general application software failure or operating system warm boot. The module
cannot be invoked while the LGN application software is running. As part of its
start-up procedure, the module checks for an existing copy of its expedited mailbox; if
it finds one, that indicates that a copy of the module is already active and the
(redundant) module terminates with an error. Other LGN modules, however, can be
shut down and restarted during op=ration of the LGN. The SB module is always the
vehicle by which this is done.

11-2

Flow of Processing

The SB module relies on the computer’s clock being set to the correct date and
time. In the production LGN, CLGN clock synchronization, operator confirmation,
and other programmatic methods should be used in order to verify that the clock is
set correctly. This feature was removed during prototype development because of the
inconvenience of entering the date and time whenever the LGN software is restarted,
a frequent occurrence during program development.

The first two steps for the module are reading the LGN.CFG file to obtain
systemwide parameters and reading the BOOT.TAB file, which contains a list of all
modules to be started by SB. SB maintains a linked list of records for each valid entry
found in the BOOT.TAB file. This list is a series of entries of the type
BOOT__ENTRY, shown in Figure 11-2. Every line in the BOOT.TAB file
corresponds to an entry in the linked list as well as to a DESQview task that is
created by SB, except for lines that begin with“#”; those are considered to be

comments.

/* One BOOT ENTRY entry for each process started by System Boot */
typedef struct BOOT__ENTRYtag

char sModule[SY MODMNEMLN + 1]; /* Module mnemonic */
char sPath[SY FILENMLN + 1]; /* Module path */
time t sStarted; /* Module start time */
DV "APIHANDLE HProc hdl; /* Module handle */
DV~ APIHANDLE hSy mbox; /* System mailbox handle */
DV~ APIHANDLE hExp mbox; /* Expedited mailbox handle */
DV APIHANDLE hLow mbox; /* Low-priority mailbox handle */
DV APIHANDLE hMailbox[MAXNOFMAILBOX]; /* Other mailbox handles */
T8OOL bSuspendable; /* Can be suspended? */
short shiMiboxct; /* Number of “other” mailboxes */
time t tAcknowledged; " Time SB rcvd. STARTUP msg. */
char— sErrortxt[SY ERRMSGLN +1]); /* Error number reported */
short shError; /* Error message */
BYTE byStatus; /* Current module status */
time t tLast shdown; /* Time of last shutdown */
time t tLast suspnd; /* Time of last suspend */
struct BOOT ENTRYtag *dpNext; /* Pointer to next entry */
}BOOT__ENTRY;

FIG. 11-2. BOOT__ENTRY PROCESS

11-3

All modules are invoked using the DESQview PIF structure and app__start API
function. For each module table entry, SB reads a corresponding PIF of the form:

< Drive>:<PIF-Dir >\<Module-Mnemonic > <PIF-Suffix >
where:

® Drive is the systemwide parameter specifying the letter of the drive where
the system software is located.

e PIF-Dir is the systemwide parameter specifying the directory containing the
PIFs for LGN processes.

® Module-Mnemonic is the two-letter module mnemonic as it appears in the
BOOT.TAB file.

® PIF-Suffix is a systemwide constant specifying the right-hand portion of all
PIF names (“-PIF.DVP”).

The PIF is read into a memory image in SB’s data space. The drive and directory
fields of the PIF image are overwritten with the drive and directory read from the
BOOT.TAB file or, if present, the drive and directory specified in the appropriate
module configuration parameter file.

SB starts DESQview processes with the DESQview API app__start function.
App__start returns a handle for the process, or zero if the process cannot be started.
SB displays the start-up time for each module as it is executed on the console.

Once the main processes for all LGN modules have started, SB waits for
SY__LGNTIMEOUT seconds to receive a STARTED message from each process
invoked. If the time expires before all processes have sent a STARTED message, or if
a process sends a CANTSTART message, (1) a diagnostic is displayed on the console,
(2) all processes are terminated, and (3) the LGN is shut down.

When SB receives a STARTED message from all processes, it returns an OPGO
message to each, and the LGN enters the Operational State. SB shuts down the SU
module, since it is needed only occasionally and can be started up and shut down as
required.

The SB module’s main tasks during the Operational State are (1) servicing
requests from the local keyboard, (2) servicing messages from a remote LGN via the

114

WAN interface module, and (3) handling system messages to and from system
mailboxes for other modules.

An operator communicates with an LGN via its local keyboard. SB displays a
menu in the DESQview window with the following options:

® Suspend a module

® Restart a module

e Shutdown a module

® Transfer a file to a remote LGN

® Ubpdate a translation table on a local or remote LGN

® Run a system utility

® Reset an LGN (shut down all LGN processes and restart the LGN)
® Request a file from a remote LGN

® Shutdown an LGN.

When a menu option is entered from the keyboard, it is verified as valid by SB and
transformed into a message to the SB system mailbox.

Table 11-1 shows the complete list of messages that SB services during the
Operational State.

If SB determines that a request conflicts with the current status of a module
(e.g., a SUSPEND request of an already suspended module), as indicated by the by
Status field in that module’s boot table entry, SB processes the request but issues a
diagnostic warning of the conflict.

Data Structures

SB employs several data structures to store current information about LGN
modules and keyboard activity. All structures listed below are defined in the include
filesb__g.h.

® Boot table. One entry for each process invoked by SB. This data structure,
already discussed, is shown in Figure 11-2.

11-5

TABLE 1141
SYSTEM BOOT MESSAGES
Message name Description
SUSPEND Suspend a module

SUSPEND__ READY

Module is about to suspend

UTIL REQST Perform utility (usually a batch file or executable
- program) via the system utilities module (which may
have to be re-spawned)
SHUTDOWN_MOD Shut down a module
MOD__ SHUTDOWN Module intention to shut down
RESTART Restart a module
SB__ RESET Reset local LGN

LGN__SHUTDOWN

Shutdown LGN

STARTED Module has completed Initialization State procedures
and is ready to make the transition to Operational
State

ERROR_ MSG Display error message on local consoie

RELOADTRANS Reload one or more translation tables

TABLERELOADED Confirmation of translation table update from remote
LGN

TEXTREPLY Text reply (probably in response to query) from
remote LGN

CANTSTART Module cannot complete initialization State tasks

PROBEQUERY or Query from local or remote LGN; if query is directed to

STATUSQUERY SB, respond; otherwise, forward query to System
Monitor

PROBEQUERYRESP or Response to query; forward to System Monitor

STATUSQUERYRESP

FILERECEIVED A remote file request has completed; display message

MSGTOOEARLY Module received a message before receiving an OPGO

message

11-6

@ Structure definition to track utility requests and local table updates. This
structure is passed to the SU module.

typedef struct UTIL_REQSTtag

{

char sModid[SY MODMNEMLN + 1]; /* Requesting module */

char sLgnid[SY “LGNNMLN + 1]; /* Source LGN */

char sSuspmodEY__MODMNEM LN +1]; /* Modules affected (suspended) */

/*Utility command for utility request, or table names for table reload: */

char sCommand[SY MAXCOMMDLN + 1);

time t tDate; - /* Timerequest issued *

short iutid; /* Request D */

short iStatus; /* Request status: */
/* CLEAR-available, no request */
/* STARTED: SU started */

JUTIL_REQUEST;

® Structure definition for storing operator keystrokes for current command. It
is used for both local and remote LGN menu requests.

typedef struct USER_ COMMANDtag

char sSrclgn[SY LGNNMLN + 1]; /* Source LGN */
unsigned short iType; /* Command type */
unsigned short iStep; /* Current step # in multi-step command */
char sSrcmod[SY MODMNEMLN +1); /* Source module */
char sF or t[SY FILENMLN]; /* Tables or files included in command */
char sDestfile[SY ~ FILENMLN]; /* destination file names (for file */

- * transfer only) */
char sAffect[SY MODMNEMLN + 1]; /* Modules affected */
char sDestign[SY LGNNMLN + 1]; /* Command goes to this LGN */
char sDestmod[SY MODMNEMLN + 1];/*and to this this module */
char sSyntax[SY_ﬁSGTXTLN]; /* Syntax of current command */

JUSER__COMMAND;

Differences Between LGN and CLGN Implementations

The CLGN can exchange data with any LGN; all other LGNs can exchange data
only with the CLGN. This is the only difference in SB operation resulting entirely
from whether or not an LGN is configured as a CLGN.

Shutdown Procedures

Shutdown procedures are similar to the processing steps previously described.
Shutdown is initiated by an operator action — either lecally or remotely. In the
prototype configuration, only a CLGN operator can initiate the shutdown of a remote
LGN. To shut down an LGN, option 3 is selected from the SB menu, causing a

11-7

SHUTDOWN message to be sent to all processes started by SB. SB then waits for a
confirmation response from each affected module. When all modules have responded,
or when SY__ LGNTIMEOUT seconds have elapsed (the same time-out period used
during initialization), the SB transaction log file SB.LOG is updated, all DESQview
objects are freed, and all LGN processes are terminated.

Files

The SB module interacts with two data files: SB.LOG and APPHAN.CFG. The
SB.LOG file is updated each time SB is started or shut down. Each record in the file
is a tally of the total number of messages received by the module, by hour. The
numbers are cumulative since the last time the file was updated.

The APPHAN.CFG file is updated during the Initialization State and each time
a module is restarted. It contains the DESQview process handles of all processes
started by SB. The file is overwritten each time SB is run.

Alternative Designs

In the production system, more frequent and expanded time and event
recording could be added, both on the local console and in the SB.LOG file. For
example, the transactions could be broken down by category, in a way similar to that
used by the WAN interface module. Better verification of system time will be
necessary in a production system. Ample coding, if not hardware-assisted, solutions
to this particular problem are available.

SUSPEND/RESTART MODULE

Purpose and Description

Suspend/Restart is not actually a separate module but is embedded in the SB
module. It makes up three commands in SB’s menu: SUSPEND, RESTART, and
SHUTDOWN. The functionality and operation of this module are described in the
previous section on SB.

Boot Procedure

Because the suspend/restart module is not a distinct process, a discussion of the
boot procedure is not applicable.

11-8

-

Processing

The BOOT.TAB table, read during SB start-up, contains a field in each record
indicating whether or not the module associated with that record can be suspended or
shut down from the SB menu. There are some exceptions. For instance, neither the
WAN interface module nor the CLGN polling module can be suspended or shut down
from a remote LGN. Because the necessary communication with the remote LGN
would be lost, there would be no way for the remote LGN to signal the module to
restart once the module was inactive.

To suspend a module, an operator at the local console or at a remote console
enters the suspend option (option 1) from the SB menu. SB then prompts the operator
for the two-letter module mnemonic telling the module to suspend. The mnemonic is
verified in SB’s boot table as valid, as is the fact that the module is not currently
suspended. Also, any rules that may prevent the module from being suspended are
enforced. SB then sends a SUSPEND message to the affected module and updates its
status flag in the boot table. '

Module restarts and shutdowns are handled in much the same way, via the
Restart option (option 2) and Shutdown option (option 3) on the SB menu. The
Restart option can be selected both for suspended modules and for those that have
been shut down. However, the current implementation of the LGN does not fully
supportl restarting a previously shut down module. This is not an issue if the entire
LGN is brought down, since, when the LGN is subsequently restarted, all modules
are started fresh (in other words, they are not considered to be restarted).

Sometimes modules are suspended automatically as part of servicing a utility
request or table update. The table update and system utility SB menu options
(options 5 and 6) are the correct way to effect such actions.

1Recall that a module’s primary mailboxes (expedited and low-priority) are created by SB
during system start-up. Once the module has received the OPGO message from SB, it opens the
already created mailboxes for the Operational State. When the module is shut down, those mailboxes
must be closed, to ensure they can be properly recreated and reopened if the module is subsequently
restarted. This aspect of module shutdown/restart has not been tested for all modules in the prototype
system.

11-9

Shutdown Procedures

Since this module is not a separate executable process or a distinct process
thread, a shutdown procedure is not applicable.

Serialization

Given the tight integration of module suspend/shutdown/restart functionality
with the SB module as a whole, it makes sense for suspend/restart to be a subset of
SB. It can remain a strictly logical subset of the SB module, or it could be packaged
as a separate function called from the SB main program. In either case, it is part of
the SB executable.

SYSTEM MONITOR MODULE
Purpose and Description

The SM module has two major purposes:
® Acts as the interface with other modules for status and performance queries.

® Ensures that critical messages relating to system or module outage are
relayed to the CLGN.

Boot Procedure

SM is booted up as a separate process in the standard way, via SB and the
BOOT.TAB file.

Processing
Frequency of Operation

The SM module is always operating, awaiting user input from the keyboard or
unsolicited status messages from other modules.

Flow of Processing

Asindicated, after module start-up, the SM module waits for keyboard input or
a message from another module. Keyboard input can request a status or performance
report on a particular module running on the local LGN. For the CLGN, keyboard
input can query status or performance for any LGN in the test network.

11-10

Query requests can be directed to one of three destinations:

o The SM module on the local LGN

® Another module on the local LGN

® A module on a remote LGN (this option is available only to the CLGN).

SM maintains a table of queries received. If the number of outstanding queries
exceeds available entries in the query table, SM will not be able to process the
overflow. Once a query has been processed, its table entry is freed up.

If the query is for the local SM module, SM writes a report file of all outstanding
and processed queries based on information in the query table. It issues a DESQview
API app__gofore call and becomes the foreground process, ensuring that its window,
in which the report file is viewed, will be visible to the local operator. When the
report is displayed on the screen, the local user can scroll through it a line at a time.

If the query is for a local module other than SM, it is forwarded to the
destination module specified in the message. In the prototype implementation, other
modules do not have any functionality for responding to queries; the queries are
presently ignored by modules other than SM. This deficiency requires remedy in the
production LGN.

In the CLGN, queries can be destined for modules on remote LGNs. In this case,
the query is bundled insidle a SENDMSG message and forwarded to the WAN
interface module, which sends the message to the destination LGN.

Query responses are serviced in a manner similar to the way in which query
requests are serviced. Responses can refer to a previous query or can be unsolicited.
Both are handled in much the same way. When SM receives a query response
message, it checks the query table for response matches with unanswered queries. If
it finds a match, the appropriate query table entry is updated. If the response is
directed to the local SM module, or if the response is unsolicited, it is displayed on the
local console. Unsolicited responses are displayed in a small window inside the
regular SM window on the screen. The format of unsolicited responses is assumed by
SM to be as follows (not including the line number designations):

® (Linel) hdr

¢ (Line?2) <Headline>

11-11

® (Line3) .hdr

o (Lines4ton) <Response Text>.

As the local user scrolls the report, the headline stays fixed on the screen. The
headline could be, for example, column headings for the text that follows. A small
program logic change could make it possible for unsolicited query responses to be sent
to the CLGN instead of being displayed on the local console.

Responses directed to the local SM module are displayed in the default SM
window on the console. As with SM-bound queries, SM captures the foreground
processing position and scrolls the response under user control.

Responses for modules on remote LGNs are packaged within a SENDMSG
message and sent to the WAN interface module, where they eventually are sent to
the destination LGN. The CLGN can send a response to any LGN in the test
network; all other LGNs can send responses to the LGN only (presumably as a reply
to a previous query from the CLGN).

Data Structures

The SM module keeps a table of queries originating from the local LGN. Each
entry is uniquely identified by its query ID. The record structure for the query table
entries is shown below. Every response received by SM is checked against this table
to determine whether or not the response is unsolicited.

#define SM__MAXQUERYONHOLD 50

typedef struct SM__QUERYONHOLDtag

MODELSHEAD mQueryhead; /* MODELS message header */
char sDestmod[SY MODMNEMLN +1]; /* Destination module */
char _ sLgn[SY LGNNMLN +1]; /* Destination LGN */
time_t tQrytime; - /* Time SM received the query */
time™t tResptime; * Time SM received query response */
BYTE byQueryid; /* Unique ID of query *!

} SM__QUERYONHOLD;

SM also uses data in this table to form the performance/activity report in
response to a query made of SM.

11-12

Differences Between LGN and CLGN Implementations

As noted previously, the CLGN can query any other LLGN. All other LGNs are
restricted to making local queries and responses, and sending responses to the CLGN.

Shutdown Procedures

SM enters the Shutdown State in the usual way, in response to an
unrecoverable error or upon receiving a SHUTDOWN message from SB.

Serialization

This module needs to be continuously available; it cannot be serialized with any
other modules.

Files

Query responses refer to an ASCII file containing the actual response to any
query. These files are scrolled on an appropriately sized window on the screen.

Alternative Designs

For a discussion of SM module alternative designs, see Remote Control Facility.
SYSTEM UTILITIES MODULE
Purpose and Description

The SU module enables the execution of operating system commands or
executable files on a remote LGN. An operator enters the utility commands as part of
a dialog generated when the Remote Utility option from the SB menu is selected. The
utility commands can be simple DOS commands, off-the-shelf programs, or batch
files. Additionally, SU is automatically used during table update operations; the
receiving end of a table update = =ssage runs an SU-controlled batch file to copy
downloaded files from a temporary directory to the target directory.

SU spawns a separate process, with the mnemonic UT, to run the batch file.
This process executes the batch file, and thus the requested commands, and then runs
the program Subatdon.Exe, which sends a BATCHDONE message to SU. The UT
process then shuts down.

11-13

UT’s size must be kept minimal. It uses the C-language system call, which
invokes a secondary copy of the DOS command interpreter but does not release the
calling program from memory. This arrangement decreases available memory for
commands invoked by the secondary command interpreter, and UT simultaneously
exacts as much allocated memory as possible from DESQview to accommodate the
most space-consuming utility commands. From the point of view of DESQview, UT
and the commands it invokes make up one process.

Boot Procedure

SU is created by SB at system start-up. Once the LGN’s Initialization State
procedures are completed, SB shuts down SU to save system cycles and re-spawns SU
as needed to run requested utility commands.

Processing
Frequency of Operation

SB creates SU anew to run system utilities whenever SU’s waiting period since
the previous utility request has run out. When SU completes its task, it remains
dormant for a pre-determined amount of time, awaiting a UTIL__ REQST or a
RELOADTRANS message. If it receives neither within the allotted time, it shuts
down. For the next utility run, SB checks to see whether SU has shut down since it
was last used. If not, messages are sent to SU, and operation continues apace; if so,
SU is started again.

Flow of Processing

SU is activated upon receiving a RELOADTRANS or UTIL__ REQST message.
For a RELOADTRANS message, SU constructs a batch file named SURELOAD.BAT
to copy the designated tables from a temporary download directory to the appropriate
target directory (C:\DE\TRANSTBL or C:\ED\TRANSTBL). SU does not construct a
batch file for other utility requests. SU then asks SB, via IPC message, to suspend
modules affected by the request, and waits 5 seconds for the module suspensions to be
completed. SU can then spawn the SU-batch (UT) process, which executes the
requested command or the SURELOAD.BAT file. At this point, SU waits for a
BATCHDONE message indicating completion of the UT process.

11-14

UT executes the command or batch file via a system call. Upon completion,
control returns to UT, and UT executes the Subatdon.Exe program via another
system call. Suba‘don sends a BATCHDONE message to SU, informing SU that the
utility command has been run. Then SU signals SB to restart all suspended modules,
starts a timer, and waits in the object queue for the next request.

If no requests are received by the time the timer expires, SU notifies SB that it
is shutting down and terminates its process.

Shutdown Procedure

SU shuts down in the usual way in response to a SHUTDOWN message from SB
or in response to an unrecoverable error. Unlike other modules, and as described, SU
also shuts down after a period of inactivity.

Serialization

SU is functionally independent; it cannot be serialized with any other modules.

Files

The batch file SURELOAD.BAT in the directory \SU\BIN is executed by the UT
process exclusively for table updates. It is rewritten every time SU receives a table
update request. Additional files may be produced as by-products of commands
invoked by SU.

REMOTE CONTROL FACILITY

There are two aspects of the prototype LGN’s remote control facility, or remote
access capability. First, it is possible to direct any file or executable command to a
remote LGN from the CLGN; likewise, data can be sent from any LGN to the CLGN
in response to a CLGN request. Second, by using off-the-shelf communications
software products, it is possible to make a keyboard at the CLGN appear to the
remote LGN to be local to that LGN; in this way an operator can enter keystrokes at
the CLGN keyboard that are sent immediately to the remote LGN. However,
implementing this second aspect of remote control is complex, as was observed
first-hand during the prototype LGN development.

11-15

Remote Commands

The SB menu, in tandem with the WAN interface module, allows the CLGN
operator to perform the following functions on any remote LGN:

® Suspend, shut down, or restart a module (except for the WAN interface and
CLGN polling modules)

® Shutdown or reset (shut down and restart) an LGN

® Sendafile

® Request any file (including a file that matches a prototype, such as “*.CFG”)
® Ubpdate a translation table.

Moreover, through the SU module, one can execute any operating system command,
executable program, or batch file on a remote LGN.

The LGN operates in local mode by default. This means that all user options
entered at the SB menu refer to local modules. By pressing Ctrl-R (the Ctrl key
simultaneously with the R key) followed by the Enter key, the operator switches the
LGN to remote mode.2 From the CLGN, all menu operations in the SB menu are
available in remote mode. For other LGNS, the remote operations from the keyboard
are limited to file requests from the CLGN. (Of course, LGNs exchange other data
without operator intervention in response to requests from the CLGN.)

When a remote command is entered at the CLGN keyboard, the operator is
prompted for pertinent information to ensure that the command is executed correctly.
For all commands, the user furnishes the remote LGN name. In the case of file
transfers and file requests, both the remote path name and local path name must be
supplied. For table updates and module operations (Suspend, Shutdown, Restart),
the affected modules must be entered. For utility requests, the user enters the name
of the utility command to be executed remotely.3

2In this mode for the prototype, all SB menu commands are directed to the CLGN (from remote
LGNs) or to a remote LGN (from the CLGN).

30ne effective device is to execute a command for which the output is redirected to a file (e.g.,
DIR >\test\dir.doc). This command can be followed by a file request for the redirected output file.
During prototype development, executing this maneuver proved to be a useful and inexpensive way to
analyze a remote LGN from a central location.

11-16

Remote Keyboard Control

During prototype development, the software package Remote24 was
investigated to enable keyboard entry at the CLGN to be redirected to a remote LGN
in real time. The virtual local keyboard is connected to its host PC through the WAN
and the remote communications software. Conceivably, this could be an effective
way to analyze and diagnose LGN problems remotely. The remote communications
software could be initiated in host mode during LGN start-up, facilitating remote
keyboard control by the CLGN at any time. However, Remote2 communications
software has not yet provided a feasible approach to remotely controlling an LGN
because (1) a host personal computer (PC) must be callable and (2) incompatibilities
exist between Remote2 and other software components of the LGN. Sometimesit has
worked flawlessly — even when running concurrently with another communications
package — but at other times, it would lock up the remote LGN with no means for
recovery, except to physically reboot the machine at the remote site. Nonetheless,
with the proliferation of interconnected networks and the requisite remote
management software, this approach may merit a second look by the time the
production system is developed.

Alternative Designs

Consider a scenario: 50,000 high-priority EDI transactions are in process
between the CLGN and a remote LGN, which is directly connected to the WAN.
While this process is occurring, an external factor dictates that the CLGN operator
must reset the receiving LGN. In the prototype design, all 50,000 transactions will
be sent to the LGN and translated before the reset action takes place. To prevent
such a problem, high-priority commands must be able to enter the WAN queue ahead
of in-process routine traffic. This can be accomplished by including additional
priority logic or by using two (or more) concurrent virtual X.25 sessions in the
production system.

The first solution could involve program logic capable of interrupting the
transmission of the 50,000 transactions and sending the reset message.
Implementing this solution may require establishing more priority levels than the
present normal and high-priority ones.

4The Remote2 software provides a virtual local keyboard capability allowing a remote keyboard
to act as though it were a local keyboard.

11-17

The second approach would require that the WAN interface module use
separate virtual sessions for exchanging transactions and for exchanging other
messages and data. This arrangement would give inter-LGN message and data
transfers some independence from inter-LGN transaction transfers. The approach is
not applicable to dial-up sites (although it could be partially implemented if the dial-
up site had two modems and two phone lines, an arrangement that seems impractical
at this time).

The module most affected by this change is the WAN interface module. The
operations subsystem modules would also be affected, to a smaller degree.

11-18

CHAPTER 12
LOGGING AND LOGISTICS DATA BASE SUBSYSTEM

Because of time and development platform constraints, no separate logging and
logistics data base subsystem has been included in the prototype LGN. These two
components of the LGN can serve as the basis, in the production environment, for
extracting analytical information about the nature, volume, and efficiency of the
data flow throughout the LGN network. A modest logging capability, developed for
the prototype LGN, has proved useful in analyzing LGN throughput and in detecting
and solving operational problems.

LOGGING

The prototype LGN does not have a separate logging module. Instead, each
module uses common LGN logging functions to log events and errors to a log file
and/or the screen, depending on the parameters passed to the functions. Each module
has its own log file.

A utility program, CLEARLOG.BAT, clears out — but does not erase — a
designated log file. The CLEARLOG utility is not run automatically but rather is
invoked manually from the keyboard (or through a remote command using the SU
module).

The main reason for not designing a stand-alone logging process for the
prototype was a concern that having a large volume of log messages passed to the
logging module would overburden DESQview’s IPC facility. This problem may not
occur in the UNIX environment, or there may be a design work-around. One
alternative is to pass error events to a common error module, which can log them and
take corrective action at its option, while logging non-error events directly as is done
currently.

DATA BASE MODULE

No data base module was developed for the prototype systems. In the prototype,
all postprocessing of log files is done off-line. At regular intervals, all log files on all

12-1

LGNS are requested and subsequently cleared via SU remote commands entered at
the CLGN.

12-2

CHAPTER 13
LGN MAINTENANCE

This chapter is an overview on maintaining the software modules, data files,
and hardware components of the LGN during the course of its day-to-day operations.

Most software maintenance and tuning of the LGN can be accomplished
through the various SB menu options previously noted. The most common
maintenance tasks are:

Translation table updates

Module software updates

Module configuration file updates

Download window file updates

Remote commands (e.g., DIR, DEL, CLRLOG)
File requests

LGN reset

LGN shutdown

Manual LGN boot.

The rest of this chapter addresses these tasks in more detail. Unless otherwise
noted, this chapter views LGN maintenance from the perspective of an operator
located at the CLGN. While this implies that modification or analysis refers to a
remote LGN, maintenance procedures performed locally usually go through the same
menu options.

SYSTEM BOOT MENU

The SB menu is the primary interface between an operator and the LGN
software. Discussed earlier, it is listed again here for convenience in Table 13-1. In
addition, Ctrl-R toggles the menu operation between local and remote mode. In local
mode, all operations refer to the local LGN; in remote mode, all operations refer to a

13-1

TABLE 13-1

SB MODULE OPTIONS

Option

number Description

Suspend a module

Restart a module

Shut down a module

Transfer a file to a remote LGN

Update a translation table on a local or remote LGN

Run a system utility

Reset an LGN {shut down all LGN processes and restart the LGN)
Request a file from a remote LGN

Shut down an LGN

O 0 N O UV A WN =

remote LGN, whose namé the user furnishes in response to a prompt. The SB menu is
available as soon as the LGN enters the Operational State.

To select a menu option, type the menu option number and press the Enter key.
At any time during the dialog following a menu option selection, pressing the Escape
key cancels the option and brings up the menu again. Two-letter module mnemonics
must always be keyed in upper case.

The LGN is in local mode by default; pressing Ctrl-R followed by the Enter key
switches the LGN to remote mode. When a menu option is selected in remote mode,
the next prompt is always for the mnemonic identifier of the target LGN. In the
discussions of the various menu options below, this prompt is implied.

GENERAL PROCEDURE FOR REMOTE MODE

SB menu options entered in remote mode cause SB to create a corresponding
message, which it embeds within a SENDMSG, SENDFILEMSG, or SENDFILE
message. This outer message goes to the WAN interface module, which sends it over
the WAN to the target LGN. (The WAN interface module divides SENDFILEMSG
messages into separate SENDFILE messages and SENDMSG messages.) On the
receiving end, the WAN interface module determines the message type via the MNP,

13-2

strips off the outer part of the message, and sends the embedded contents to SB. At
that point, SB services the message as if it were a local command.

TRANSLATION TABLE UPDATES

Translation table updates are translation table replacements; the entire file is
overwritten. There is a danger that a replacement translation table may be
truncated or corrupted by a communications error while it is replacing the old table.
For protection, replacement tables are copied first to a temporary directory on the
target LGN and then to the destination directory.

To update (replace) a translation table, select option 5 from the SB menu, enter
the full path name of the file to be replaced, and enter the translation precess (DE or
ED) that will be affected. The new table is sent to the directory CASU\DOWNLDED
on the target LGN. Then, the affected translator module is suspended, the table is
copied from the \SU\DOWNLDED directory to the correct target directory
(\DE\TRANSTBL or \ED\TRANSTBL), and the translator module is restarted. A
copy of the replacement table will remain in the \SU\DOWNLDED directory until
deleted via the remote command facility.

MODULE SOFTWARE UPDATES

To update an executable module program, select file transfer (option 4) from the
SB menu. Answer prompts for source file and destination file names (including full
path). If left blank, the destination name defaults to the source name. The file will be
sent to the target LGN and directory by the WAN interface module. Remember that
remote LGNs can send files to the CLGN only.

Theoretically, at this point the affected module would be shut down and
immediately restarted. But, since not all testing in the area of opening and closing
mailboxes has been completed, it is not certain that this procedure will work for all
modules. If shutting down and restarting the module does not work, it will be
necessary to reboot the LGN manually. This is an acknowledged limitation of the
prototype LGN.

To shut down a module, select option 3 from the SB menu. This option is
straightforward; enter the two-letter mnemonic of the module to be shut down. The

13-3

SHUTDOWN message will be delivered over the WAN to the target LGN, where SB
will issue an appropriate SHUTDOWN message.

To restart a module, select option 2 from the SB menu. This option is the
converse of the module shutdown option; enter the two-letter mnemonic of the module
to restart. The RESTART message will be relayed to the target SB module, which
will restart the module in question.

MODULE CONFIGURATION FILE UPDATES

Often a change in the environment of an LGN will necessitate updating one or
more module configuration files. The file transfer option (option 4) on the SB menu
triggers a remote configuration file update in the normal way. As with other file
updates, the configuration file is actually overwritten, not updated in the normal
way. On prompt, enter the full path name of the source file and, optionally, the full
path name of the destination file. If not entered, the destination name defaults to the
source file name. A SENDFILE message is relayed to the WAN interface module,
which uploads the file directly to the destination path on the receiving LGN.

Usually, it is necessary to suspend and restart the module associated with an
updated configuration file if the new parameter values are to take effect. This is done
by selecting suspend (option 1) and restart (option 2) in that order. Both of these
options are straightforward, requiring only the two-letter mnemonic of the module
affected.

Table 13-2 shows some of the more frequently changed configuration param-
eters.

DOWNLOAD WINDOW FILE UPDATES

This task traces nearly the same steps as updating module configuration files.
The file transfer option (option 4) is selected from the SB menu. The source file name
is always CALINDNLD\TABLES\DLWINDOW.DAT. The destination file name may
be left blank, since it will default to the source file name. This file is likely to be
updated frequently. It is subject to change when mainframe host file names or
availability times change. Other factors also may result in an update to the
download schedule.

13-4

TABLE 13-2

FREQUENTLY CHANGED CONFIGURATION PARAMETERS

File Parameter Description

CL.CFG Poll Interval Number of seconds between successive polls to the
CLGN for message or files. Normally, thisis setto a high
value resulting in a poll once or twice a day. When
several files or messages need to be sent to an LGN, this
value may be set to as low as 10 minutes (600 seconds).

LI.CFG DNLDTimeout Number of seconds after which to assume that the
download process encountered an unrecoverable error.
This value may change on the basis of the download
software used, the mainframe response time, and the
size of download files.

LI.CFG HostSessioninterval Number of seconds between download attempts. This
value may be adjusted depending on the drain on host
resources caused by a download attempt and the
likelihood of the download attempt to fail.

WI.CFG DeferTimeout Number of seconds to wait before retrying to send a file
or message. This value may be temporarily decreased if
the CLGN requires several files from the LGN or if the
likelihood of a communications failure is high.

REMOTE COMMANDS

One of the more valuable LGN features is an ability to enter a DOS command,
executable program, or batch file (collectively called a command or a utility
command) to be run on a remote LGN. To invoke this feature, select the run a system
utility option (option 6) from the SB menu and (in response to the prompt that
follows) the exact command to be run. At the next prompt, enter the two-letter
mnemonic of any process to be suspended during the execution of the command;
usually, this can be left blank. It is often useful to redirect the output of a command
to a file that can be retrieved later. For example, the command DIR
\DE\TRANSTBL*.* > \TEST\DIR.DAT saves the list of all DLSS-to-EDI translation
tables and sends it to the file \TEST\DIR.DAT, which can be retrieved later using the
file request option (option 8).

Two commonly used commands are DEL and CLEARLOG. The DEL command
is often used after a table update to delete the temporary copy of the replacement

13-5

table (in the \SU\DOWNLDED directory). Sometimes LGN errors result in a
proliferation of intermediate files that normally would have been deleted. A DOS
TREE command, followed by one or more DEL commands, erases the superfluous
files. The CLEARLOG command clears out, but does not delete, a log file. If this
command is not periodically applied to log files, they grow indefinitely.

FILE REQUESTS

To retrieve a file from a remote LGN, select file request (option 8) from the SB
menu. Answer the prompts for source file name (on the remote LGN) and destination
file name. Again, the destination file name defaults to the source file name if left
blank. The next prompt is for a file request ID, which is simply a reference number
for the file request. The WAN interface log will display the file request ID in the log
entry corresponding to the status of the ensuing file transfer. Once all the required
information is entered, the WAN interface module downloads the file from the remote
LGN. I the requested file does not exist, an appropriate error message is displayed in
the WAN interface window and entered in the WAN interface log.

A special feature of the file request option allows an operator to enter a file
name prototype (e.g., \WD\STAGING1*.*) for the source file name. In this case, the
first file on the remote LGN that matches the prototype will be downloaded. If no
files on the remote LGN match, an error message will result.

LGN RESET

The SB menu reset LGN item (option 7) shuts down and immediately restarts
all modules on the designated LGN. No further prompts are involved with this
option. However, as previously discussed, because of imperfections in this area of the
prototype LGN, there is no assurance that all modules will restart once shut down.
Moreover, this option will not necessarily bring back a hung LGN if the hang-up
results from a hardware problem or from a severe operating system or memory error.
Thus, in the prototype, this option is less useful than it could be. More often, a
combination of using the LGN shutdown option (option 0) and manually restarting
an LGN will be employed.

LGN SHUTDOWN

This is a frequently used option, especially during prototype development. Use
of this option, combined with a manual LGN boot, often follows major software

13-6

updates on an LGN. Select shut down LGN (option 0) from the SB menu. This option
will have the effect of shutting down each LGN module, one by onc. The SB module
will be the last to go, and the LGN PC will be at the DESQview main menu. Should
any module windows remain on the screen, their presence is most likely due to (1) the
DESQview “Close on exit” option not being set to *Y” in the module’s PIF or (2) an
unrecoverable error in the module that prevents it from processing the SHUTDOWN
message.

MANUAL LGN BOOT
An LGN can be started in one of three ways:
® Warm-booting the PC (Ctrl-Alt-Del)
® Cold-booting the PC (turning the power on)
¢ Invoking DESQview and selecting SB from the Open Window menu.

If the LGN has a X.25 PAD board installed, a cold-boot may be necessary to recover
from certain X.25 protocol failures. Also, cold-boot may be the only way to recover
from other unidentified errors that hang the LGN.

13-7

AccSys
ACK
AdCom2-I
Alpha
ANSI

API
ASCI
AWK

baud
BOOL
CCITT

char

CLGN

CODEMAP

CRC
D2E
DAAS
DAASO
DBMS
DDN
DIC
DIC2TID

]

GLOSSARY

API function library for Paradox

acknowledgment of electronic message

FTC telecommunications board for PC housing X.25 protocol

alphabetic data type

American National Standards Institute

Application Programming Interface

American Standard Code for Information Interchange

programming language developed by Aho, Kernighan,
Weinberger

telecommunications transfer rate unit of measure
Boolean data type

International Telegraph and Telephone Consultative
Committee

character data type

central logistics gateway node
LMI-developed translation table

cyclical redundancy checking

LMI-developed DLSS-to-EDI translation software
Defense Automatic Addressing System
Defense Automatic Addressing System Office
data base management system

Defense Data Network

Document Identifer Code

LMI-developed translation table

Gloss. 1

DLSS
DLSS2EDI
DODAAC
E2D

EDI
EDI2DLSS
EDISEGS
EVALDLSS
EVALEDI
FTC
FTTSO
GMT

int

IrPC

LAN

LEX

LGN

LMI

MB
MODELS
MNP
NAK
P-Code
PAD
Paradox
PC

PIF

Defense Logistics Standard Systems
LMI-developed translation table

DoD Activity Address Code

LMI-developed EDI-to-DLSS translation software
electronic data interch-.ge

LMI-developed translation table

LMI-developed translation table

LMI-developed translation table

LMI-developed translation table

Frontier Technologies Corporation

file-transfer software

Greenwich Mean Time

integer data type

interprocess communication

local area network

lexical analyzer

logistics gateway node

Logistics Management Institute

megabyte

Moderization of Defense Logistics Standard Systems
MODELS Network Protocol

negative acknowledgment of electronic message
“Portable-code”

packet assembler/disassembler

relational data base by Boland Corporation
personal computer

Program Information File

Gloss. 2

_

PKARC
PKXARC
RAM

SB

SM

SU
Super-X
SuperSort V1.6
TID
TransLog
TSR
UNIX
WAN
WORM
XMODEM
X.25

XXX
YACC

PKware data compression software
PKware data uncompression software
random access memory

System Boot (Module)

System Monitor (Module)

System Utilities (Module)

FTC run-time software

commercial sorting software

transaction ID

LMI-developed language that captures translation logic
Terminate-and-Stay-Resident

AT&T Bell Laboratories Operating System
wide area network
Write-Once-Read-Many

file transfer protocol

packet-switching network access protocol
transaction test segment

parsing software

Gloss. 3

APPENDIX A
PROTOTYPE LOGISTICS GATEWAY NODE DISK DIRECTORIES

This appendix contains brief descriptions of all significant files in the prototype
logistics gateway node. The files are listed by directory. The file list is for a
development personal computer; thus, source files and development tools are
included, as well as the executable files and data files that are found on a field LGN.
Data file name extensions would be slightly different on a central LGN.

A-1

Directory C:\ - DOS / System Files, Autoexec.Bat
File Name Description
autoexec.bat Environment Variables, Adcom2-I TSR Calls, Call to DESQView
dv.bat DESQview Batch File
loadhi.com High-Memory TSR Loader
qemm. com Quarterdeck 386 Memory Manager / Multitasker
config.sys Qemm and Other Device Driver Specifications
qesm. Sys Quarterdeck System File
qext.sys Quarterdeck System File
Directory C:\AK - Awk Software
File Name Ducription
awk.exe Awk pattern language interpreter
Directory C:\CL\BIN - CLGN Polling Executable Code
File Name Description
cl010.exe CL CLGN Polling Executable
Directory C:\CL\SRC - CLGN Polling Source Code
File Name Descriptwn
cl010.¢c cL CLGN Polling Main Program
Directory C:\CONFIG - Module and System-Wide Configuration Files
File Name Description
am.cfg Automsg (Test Message Generator) Parameters
cl.cfg CLGN Polling Parameters
de.cfg D2E Parameters
ed.cfg E20 Parameters
ld.cfg Len Dequeuing Parameters
lgn.cfg LGN Parameters
li.cfg Local Interface Parameters
sb.cfg System Boot Parameters
serialrm.cfg Next Serial Number to be Used by Lan Dequeuing Filter
sam.cfg System Monitor Parameters
su.cfg System Utility Parameters
validmod.cfg Permissable Module Mnemonics
wd, cfg WAN Dequeuing Parameters
wi.cfg WAN Interface Parameters
wq.cfg WAN Queuing Psrameters
boot.tab DESQview Process Table for System Boot
A2

Directory C:\DE\BIN - DLSS-to-ED! Binary Code

File Name Description
d2e.oxe D2E Executable

* obj D2E Object Files

Directory C:\DE\ERR - DLSS-to-EDI Error Files

File Name Description

* err D2E Error Files

Directory C:\DE\INCLUDE - DLSS-to-EDI Include Files
File Name Description

*.h DZE Include Files

Directory C:\DE\SRC - DLSS-to-ED! Source Code

File Nome Doscription

d2e.c DZE Main Source File

*.c D2E Function Source Code

d2escan. | D2E Grammar Definitions

grammar.y D2E Grammar

Directory C:\DE\TRANSTBL - DLSS-to-EDI Translation Tables
File Name Description

codemap.db DLSS Volue ED! value Mapping

dic2tid.db DIC Pattern to TID / TID Section Mapping
dlss2edi.db Rules and Transformations for Forming EDI Transactions
evaldlss.db DLSS Logical Name Definitions

codemap. px Index for CODEMAP Table

Directory C:\DE\VAL - DLSS-to-EDI Valid Output Files
File Name Dmription
* val D2E Output Files

A-3

——_———ﬁ

Directory C:\DV - DESQview System and PIF Files
File uuc Dmription

setup. bat ODESQview Setup Batch File

px-load.com DESQview Special Loader Program for Paradox 3
dvsetup.dv DESQview Setup Program Output

desqview.dvo DESQview Open Window Menu Configurstion
am-pif.dvp AutoMessage PIF File

cl-pif.dvp CLGN Polling PIF File

de-pif.dvp D2E PIF File

dl-pif.dvp Download Script PIF File

ed-pi f.dvp E2D PIF File

12-pif.dvp LAN Dequeuing Filter Batch File PIF File
ld-pif.dvp LAN Dequeuing PIF File

Li-pif.dwp Local Interface PIF F.file

p3-pif.dvp Paradox 3 PIF File

sb-pif.dvp System Boot PIF File

sm-pi f.dvp System Monitor PIF File

su-pif.dvp System Utility PIF File

w2-pif.dvp WAN Queuing Archive Batch File PIF File
w3-pif.dvp WAN Dequeuing Un-Archive Batch File PIF File
wd-pif.dvp WAN Dequeuing PIF File

wi-pif.dvp WAN Interface PIF File

wq-pif.dvp WAN Queuing PIF File

desqview.dvs DESQview Autostart Script

dv.exe DESQview Program

Directory C:\DVAPI\INCLUDE - DESQview AP! Include Files
File Name Description

dvapi.h DESQview API Type Definitions and Lou-l.wel Deflmtlom
dvapi2.h DESQview APl Function Prototypes

Directory C:\DVAPI\LIB ~ DESQview API Function Library
File Name Description

api.lib DESQview Libnry of All API Functions

spi.lst Listing of api.lib Contents

Directory C:\DVAPI\OBJ - DESQview APl Object Code
File Name Description
*.0bj DESQview API Object Files (Components of api.lib)
Directory C:\ED\RIN - EDI-to-DLSS Binary Code

File Name Description
e2d.exe €2D Executable
* . obj E2D Object Files

A4

Directory C:\ED\COMPARE ~ ED1-to-DLSS Compare Files

File Name) Description

.. E2D Compare Files

Directory C:\ED\ERR - EDI-to-DLSS Error Files

File Name Description

* err E2D Error Files

Directory C:\ED\INCLUDE - EDI-to-DLSS Include Files

File Name Description

*.h E2D Include Files

Directory C:\ED\SRC - EDI-to-DLSS Source Code

File Nome Description

edd.c E2D Main Source File

*c E2D Function Source Code

scan, | E2D0 Grasmar Definitions

grammar.y €20 Grammar

Directory C:\ED\TRANSTBL - EDI-to-DLSS Translation Tables
File Name Description

codemap.db DLSS value - ED! Value Mapping

edi2dlss.db Conditions, ED1 Field References, and Transformetions for Building DLSS Transactions
edigegs.db ED! Segment Des.ripti:ns / Templato

evaledi.db E2D Field Defin'tionr

codemap . px Index for CODEMAP 1able

Directory C:\ED\VAL - EDI-to-DLSS Velid Output Files
File Name Description

* val E2D Output Files (Volid 'I’rmuctlom)

Directory C:\FTC\INCLUDE - FTC AP1 (Super-X.25) Include Files
File mne Description

ftctypes h Super-X.25 Type Dcfinitiom

ftex25.h Super-X.25 Constant and Structure Definitions
intfcx25.h Super-X.25 Structure and Status Code Definitions
t2_init.h Super-X.25 Level 2 Structure Definition

t3_init.h Super-X.25 Level 3 Structure Definitions

Directory C:\FTC\LIB - FTIC API Librery and Source Files
File Name Description
call_pkt.c Super-X.25 Source Code for Converting To/From X.25 Packet Structure
intfcx25.c Super-X.25 Source Code for APl Functions

lctomsc.c Super-X.25 Source Code for Utility Functions
x25.11b Super-X.25 Function Library - Recompiled With Turbo €

A5

File Name

asiports.h

gf.h
ibmkeys.h
xmodem. h

File Name

............

gfc?.lib

————1

Directory C:\GLEAF\INCLUDE

Description

L T .o

« GreenLeaf Communications API Include Files

T TN D L T L L L L e i LT vosa

Constants, Structure Definitions, and Function Prototypes for Communication Ports,
Interrupts, Status Registers, Etc.
General Include File

Include File for

getkey() Special Key Codes

Constants, Structures, and function Prototypes for Xmodem Routines

Directory C:\GLEAF\LIB

Description

- GreenLeaf Communications APl Libraries

GreenLeaf Comm Libraries for Different Memory Models (gfcl - Large Model - Used for LGN

Prototype)

Directory C:\GLEAF\SOURCEB

File Name

Description

- GreenLeaf Communications APl Source files

GreenLeaf Comm Source Files

Directory C:\LD\BIN

File Name
automsg.exe
1d010.exe
1d020.exe
1d021.exe
sbstub.exe

Description

AutoMessage Executable (For Development Only)

LD Main Executable Program

LD Semaphore Lock Executable

LD Semaphore Unlock / FILERDONE Message Sender Executable
S8 Stub for Testing LD Executable

Directory C:\LD\FILTER

File Name
addkey. awk
billkey.awk
cons . awk
gbl.awk
m561.awk
m562.awk
r564 . auk
m565 . awk
m566. awk
m568. awk
mbills.awk
mt23. awk
rm01.awk
filter.bat
sort.com
*.crs
error.txt

Description

----------------------------- L L L L L T R R R I L L I T YT

Assigns a Key to

Assigns a Key to ALl MILSBILLS Cards
For MILSTAMP Cards, Determine Container Congolidation Number snd Append to Card
Filters All Single-Card DLSS Transactions; Extracts All Cards Associated with GBL Cards

Groups 561 Cards
Groups 562 Cards
Groups 564 Cards
Groups 565 Cards
Groups 566 Cards
Groups 568 Cards
Groups MILSBILLS

Writes Transactions for T2 snd T3 Independent TCMDs (and Subordinate Tés)
Extracts and Writes T0 and T1 Transactions
LD Filter Batch File - Controls All Flltering snd Sorting

SuperSort

SuperSort Directive Files
Transactions That Did Not Pass Filter (Overwritten Each Time)

- LAN Dequeuing Binary Code

- Awk Filter Programs; Sort Directives; Batch File

All 568 Cards

into Trangsactions
into Trangactions
into Transactions
into Transactions
into Transactions
into Transactions and Strips Off Leading Key
into Transactions

A-8

Directory C:\LD\SRC - LAN Dequeuing Source Code

File Name ’ Description

automsg.c LD Test Message Generator

1d010.c LD Main Process

1d020.c LD Filter Semaphore Lock

1d021.¢c LD Filter Semaphore Unlock and FILTERDONE Message Sender
sbstub.c System Boot Test Stub (For Development Only)

Directory C:\LD\VAL - LAN Dequeuing Filtered Transsction Files
File Name Description

*_ val DLSS Transactions That Passed the Filter

Directory C:\LI\BIN - Local Interface Binary Code

File Name Description

1i010.exe LI Main Executable

1i020.exe L1 DNLDDONE Message Sender

Directory C:\LI\DNLD\QUEUE - Uniquely-Named Download Files

File Name Description

*.dld Downloaded Raw DLSS Transaction Files

Directory C:\LI\DNLD\STAGING - Staging Ares For Downloaded Files
File Name Description

. Downloaded DLSS Files - Teuporory Nolding Area
Directory C:\LI\DNLD\TABLES - Local Interface Download Peremeter Files
File Nome Description

diwindou.dat L1 Download Script Window Paramters

Directory C:\LI\SCRIPTS - Local Interface LGN-Specific Download Scripts
File Name Description

testscrp.exe LI Test Download Script Exccutuble

testscrp.c Ll Test Download Script Source

% _bat L1 Download Script Batch File (Site-Specific)
* . exe LI Download Script Executable (Site-Specific)

Directory C:\LI\SRC - Local Interface Source Code

File Name Description

li_dnld.bat LI Script Batch Controlling File

1i010.c L1 Main Process Source

1i1020.¢c L1 Batch Completion Message Sender Source

AT

Directory C:\SS\BIN - System Boot Binary Code
File Name ' Description
sb.exe SB System Boot Executable
sbreset.exe $8 Restart Executable
subatdon.exe BATCH_DONE Message Sender Executable
Directory C:\SB\LOG .~ System Boot Transaction Log
File Name Description
sb.log Number of SB Messages by Nour; Record Added for Esch Rutart
Directory C:\SB\SRC - System Boot Source Code
File Name Description
oplib.c SB Operations Libnry
gb.c SB Main Process
sblib.c SB Main Library
sbreset.c S8 Resteart
sb_kbin.c SB Keyboard Interface
sb_g.h SB Global variable Definitions
sb_L.h SB Local Variasble Declarations
Directory C:\SM\BIN - System Monitor Binary Code
File Name Description
sm.exe SM Executable
Directory C:\SM\SRC - System Monitor Source Code
File Name Description
oplib. SM Utllity and Support chtiom
sm.C SM Main Process (Services Queries)
smlib.c SM Miscellaneous Query Support Functions
sm_kbin.c SM Keyboard Interface
sm_g.h SH Global variable Definitions
sm_L.h SM Local Variable Declarations
Directory C:\SU\BIN - System Utility Binary Code
File Name Description
sureload.bat Teuporary file to Copy Traml.tion Table From Temporary Directory to outlmtion
Directory (\DE\TRANSTBL or \ED\TRANSTBL)
su.exe SU System Utility Executable
su-ut.exe SU Executable to Spewn Requested Process and SUBATDON Process
subatdon.exe SU Executable to Send BATCHOONE Message to SU Main Process
Directory C:\SU\DOWNLDED - System Utility Table Holding Area
File Name Description
* d Translation Table
A-8

Directory C:\SU\SRC - System Utility Source Code

File Name Description
oplib.c SU Operations Functions

su.c SU Main Process

su-ut.c SU Spawn Batch Utilities

subsatdon.c SU Send Batch Done Message to SU Main Process

Directory C:\SY\BIN - System-Wide Binary Code

File Name Description
*.0bj System Function Object Files

Directory C:\SY\INCLUDE - System-Wide and WAN Interface Include Files
File Name Description

cfg.h SY Configuration Parameter Mnemonics

errmgr.h SY Error Definitions/Constants

mnp.h W1 MODELS Network Protocol

models.h SY MODELS Constants Definitions

paths.h SY File and Path Definitions

pif.h SY DESQview PIF Structure Definition

pdox. h AccSys Paradox APl Variable and Constant Definitions and Function Prototypes
su.h SY Function Return Code Definitions and Prototypes

sulog.h SY Logging Constant Definitions

sylen.h SY Variable, Array, and Data Length Constants

symsg.h SY 1PC Message Definitions

systddef.h SY Standard Types, Constants and Macros

syutil.h SY Definitions of Constants and Macros That Are Used Only By System-Wide Library

Functions

timers.h SY DESQview Timer Constants

wi.h Wl Constants, Macros, and Type Definitions

wimodem.h Wl Hayes Modem Definitions

wistats.h Wl Definitions for Performance Statistics Maintenance and Reporting
xm.h Wl Xmodem Constants

Directory C:\SY\LIB - Various Libraries

File Name Description

pdoxt.lib AccSys Paradox APl Library

su.lib SY System-Wide Utility Function Library (Containe Functions in \SY\BIN)
tllex.lib LEX Lexical Analyzer Library

tlyacc.lib YACC Parsger Library

Directory C:\SY\Log - LGN Module Logs

File Name Description

7?. log Module Log File

filter.log Filter Log File (Overwritten Each Time)

Directory C:\SY\SRC - Source Code for System-Wide Library Functions
File Name Description

error.c SY Error Handler Functions
mail.c SY Mailbox / IPC Functions

sufuncs.c SY Common Utility and DESQview APl Functions

sulog.c SY Logging Functions

timers.c SY DESQview Timer Functions

Directory C:\TP\BIN - Transaction Processing Subsystem Binary Code
File Name ' Description
tp010.0b] Functions Comson to TP Modkles
Directory C:\TP\INCLUDE - Transaction Subsystem Include Files
File Name Description
wh Function Prototypes, Constants, and Globsl Varisbles Comon to TP Modules
Directory C:\TP\SRC - Transaction Subsystem Source Code
File Name Description
we Source for Comon TP Functions
Directory C:\UTIL - Utility Programs
File Name Description
clearlog.bat UtiLity to Clear Module Log
pkarc.com File Compressor
pkxarc.com File Uncompressor
Directory C:\WD\BIN - WAN Dequeuing Binary Code
File Name Description
wd0l0.exe W Main Executsble
wd020. exe WO UNARCOONE Message Sender Executable
Directory C:\WD\QUEUE - Destination Directory for Uncompressed EDI Files
File Name Description
o T Unconpressed EDI File - Input for E2D Translator
Directory C:\WD\SRC - WAN Dequeuing Source Code
File Name Description
wd_unarc. bat W Un-Archive Batch File
wd010.c WD Main Process
wd020.¢ WD UNARCDONE Message Sender
Directory C:\WD\STAGINGY - EDI Archive (Compressed) Files
File Nome Description
e EDI Archive file
Directory C:\WD\STAGING2 - EDI Uncompressed Files
File Name Description
oo T Unconpressed EDI File - Input for E2 Translator
Directory C:\WI\BIN - WAN Interface Binary Code
File Nome Description
. oo VI Executable
*.0bj Wl Object Files
A-10

Directory C:\WI\QUEUE\FILE - WAN Interface Outhound Files (Dial-up Sites)

File Name Description

.. Outbound (For Remote LGN) File

Directory C:\WI\QUEUE\NSG - WAN Interface Outbound Messages (Dial-up Sites)
File Name Description

L Qutbound Message

Directory C:\WI\QUEUE\REQUEST - WAN Interfece Outbound File Requests (Dial-up Sites)
File Name Description

b Outbound Ftle Request

Directory C:\WI\QUEUE\TBL - WAN Interface Outbound Translation Tables (Dial-up Sites)
File Name Descnpnon

v db Outbomd Translat\on Table

Directory C:\WI\SkC - WAN Interface Source Code

File Name Description

clkresp.c Wl Clock Response Message Routine

clksync.c Wl Clock Synchronize Routines

comm.c Wl Generic Communication Routines

deferred.c W1 Deferred Message Handler

dialup.c Wl Dial-Up Routines

dodaac.c Wi DoDaac Address Handler

getedi.c W1 Check for and Receive EDI File From Remote LGN
getmsg.c W1 Check for Message on Remote LGN

getparam.c Wl Configuration Parameters Retrieval

halt.c Wl Exit Routine

initx25.c Wi Initialize Super-X.25 Interface

ipcinit.c Wl Initialize DESQView Interface

ipcserve.c Wl IPC Service Routines

linkx25.c Wl X.25 Levl 2 and Level 3 Initislization

makecall.c Wl Connect to LGN

wnpchk.c Wl Check Polling Requests From Remote LGNs

mprev.c Wl Handle Receive Portion of MADELS Newtork Protocol (MNP)
mpsend.c W1 Service an MNP Send File Request

mnpserve.c Wl MNP Functions

modem. ¢ NI Hayes Modem Routines

netutil.c Wl MNP-t0-X.25 Interface

revedi.c Wi ED! Message/Data Reception

received.c W1 ED! Reception Support Functions

request.c Wl Initiate File Request (From Remote LGN)

reset2i.c Wi Oversee resetting of FYC AdCom2-! Bosrd

A-11

Directory C:\WI\SRC (cont.)

File Neme Description

sendedi.c Wl Send EDI File (Archlved)

sendfile.c Wl File Transfer

sendfmeg.c Wl Send File-Message Pair

sendmsg.c Wl Send Message

shutdown.c W1 Normal Termination

startx25.¢ W1 Manage X.25 Network, Hardware, and Software Initialization

stats.c Wl Performance Statistics - Updste and Log

superx25.c Wl X.25 Support Routines - Calls Super X.25 API

suspend.c W1 Suspend Process Routine

switch.c W1 Manage File Sempahore (At TROSCOM Only)

wanexec.c W1 WAN Executive - IPC and WAN Service Manager

wanserv.c W1 Service IPC Queue

wilog.c WI Logging Routines - Calls SULOG System-Wide Function

wimain.c Wl Main Program

x25serv.c Wl X.25 Packet Send/Receive

xmack.c W1 XMODEM Send Acknow!edge/NAK

xmbuffer.c W1 XMODEM Transmit/Receive

xm*.c Greenleaf XMODEM Functions - Modified for WI Larger Block Size and Use of X.25 Board /
Super-X.25 APl Instead of Serial Port

ym*.c Like xm*.c Routines, Except for Dial-up Sites (Not Direct-Connect)

Directory C:\WI\SUITCH - WAN Interface Semaphore Directory (TROSCOM Only)

File Name Description

port.sem W1 TROSCOM Semauphore File (For Serial Port Contention)

Directory C:\WI\TABLES - WAN Interface Run-Time Tables

File Name oescriptlon

dodaac.dat W1 DoDaac Address File

Directory C:\WQ\BIN

File Name
wq010.exe
wq020.exe

Directory C:\UO\QUELE

File Name

L
.

- WAN Queuing Binary Code

Description

asvevesmcssrscecscpsencsonscscannna

¥Q Main Process Executsble
WQ ARCDONE MEssage Sender Executable

- WAN Queuing Outbound EDI Archive (Compresed) Files

Description

EDl Archive File

Directory C:\WQ\SRC

File Name

- WAN Queuing Source Code

Description

P R L L L L Y R e N R P L L R L g vae

UO Archiving Batch Filc
WQ Main Process
wq arc.bat Completion Program; Sends ARCDONE Message to W0010

A-12

APPENDIX B
TRANSLATOR SYSTEM FUNCTIONS

The table on the following pages lists all system functions for both the Defense
Logistics Standard Systems (DLSS) to Electronic Data Interchange (EDI) and
EDI-to-DLSS translators. The system functions are callable by TransLog expressions
in the Paradox tables (and thus in the internal P-Code representations of those
tables). The functions receive parameters and pass values via the execution stack in
the translator’s memory space.

The argument lists after each system function in the table represent values that
are passed on the stack and pulled off by the function during its span of control.
System symbols in the table that are followed by an asterisk are system variables; all
other symbols are functions.

B-1

Function Name Rescription

AddDays(“yymmdd", iDays) Peturns a date incremented by a specified number of days.

Cat(¥string1®, ¥“string2») Concatenates two string values,

ccO) Synonym (in function form) of CurrentCard.

CUrrentCard' The number of the current card (counting the first card as 1)
within the current trensaction.

DiffDays(*yymmdd-hi®, Returns the difference in days between tuwo YYMMDD dates.

“yymmdd- Low")

DiffMonths("yymmdd-hi%, Returns the difference in months between two YYMMDD dates.

Myymmdd- | ow")

DlssValue(¥codename”, “edival") Converts from EDI values to DLSS values via the CODEMAP table.

bd2Dat(“dd") When passed a two-digit Julien day, supplies the third (most

significant) Julian digit and one-digit year, based on current
date, and then converts the resulting date to EDI format. The
two-digit Julian day is assumed to refer to the next day in the
future where the Julien day ends in those two digits.

DocNo2Date("Document - number®) Converts a document rumber to an EDI date.

DQuant(“DLSS-quantity") Converts a DLSS quantity field into a string containing a numeric
quantity. A DLSS quentity field may have an "M* in the last
position, which gets converted to “000* (thousands).

EdiElement(wSegSeq, wWUse, Retrieve the value of sn element given the segment sequence
wEltSeq) rumber, segment use number, and element sequence number.

Function Name
Edivalue(“codename", DLSSValue)
Exit()

FindCard(/Pattern/, iDirection,
iCardOrigin, wStartCol, wlen
LI, “string1®, wStartCol1,
slenl)...]

FindUse(uSegSeq, wSegUse,
wEltSeq, /Pattern/ [[, wEltSeq,
/Pattern/)...]

InRange(ulower, wUpper)
IsAlpha(*string")
IsNumeric("string")
1sPunch(wCardNo, wCardPos)
IsVal i dMMM(“mmm")

-
LastCard

Len(“string¥)

Descripti

Converts from DLSS values to EDI values vis the CODEMAP table.
Causes processing of the current TID section to cease.
Returns card nuwber that metches a specified psttern in specified

columns on the card. More than one pattern-columns pair csn be
passed. The range of cards to search is also passed.

Finds a use of an EDI segment based on a value from a particulsr
element within the segment. If wSeguse > 0, than s particular
instance of the segment is searched.

Boolean function that determines whether an integer is within
certain renge.

Boolean function that determines whether a string is composed
entirely of upper case alphabetic characters.

Boolean function that determines whether a string is composed
entirely of digits (0-9).

Determines if the specified position in a card contains one of
the overpunch characters (}JKLMNOPQ).

Determines whether s month of the form MMM (e.g., DEC) is a
valid 3-letter sbbreviation.

The number of cerds in the transaction.

Returns the length of a string.

B-3

Function Neme

LZero(“string®, wlen)

Matches("string", /pattern/)

Mmmdd2dat (“mmmdd®, “yy*)
Numval("string")

Punch(%string”, wPunchPos [,
wPunchPos, ...])

RDOD2Dat(“ddd" [, “Document-
date"])
RODS(iMonths, “yymmdd")

RP(iCard, wPos, wlLen)

Spaces (wNumber)

StartRDP(iDays, “yymmdd", “day-

code*)

Strval(uint)

SubStr("string®, wStart, wlen)

SubtractDays("yymmdd®, iDays)

Rescription

Returns a string padded with leading zeros when passed a string
and a length for the returned string, including the zeros.

Boolean function that determines whether a string metches a
regular expression.Mm2wwm(“mm*)Converts an MM month string to
MMM,

Takes an MMMDD string and a YY string and returns an EDI date.
Converts a string to an integer.

Examines up to 19 positions within a string and “punches® those
that contain a numeric digit.

Calculates an EDI date from a julian day offset in the form DDD
and the year of the current date or, if provided, a document
date.

Calculates a date equal to the last day of the month of (start
date + iMonths.)

Returns the string found in DLSS card number iCard, starting in
position wPos, for wlen columns.

Generates a string of wNumber spaces.

Computes a date equal to a document date plus number of days
minue a day code (“A"si, "g*=2 etc.)

Converts a rumeric to a string.

Returns a substring of & given string, starting in position
wStart, for a length of wLen characters.

Returns a date decremented by a specified number of days.

B4

Function Name
ToDQuant(lQuant)

UnPunch(¥string®, wUnPunchPos
[, wunPunchPos,...l)
*
Value
Yddd2Dat (*yddd")
Ymd2Dat (®ymd")

Ysm2Dat (“ymm™)

Y2yy(ty*)

Yymmdd2J(*yymmdd*)
Yymmm2Dat ("yywem®)
Yymmmdd2Dat (*yymrmdd®)
Yymmndd2 J (*yymmmdd*)

Yymmdd2Ymd(“yymmdd®, bOor1Flag)

pescription
Converts s quantity to & DLSS quantity (opposite of Dauant).

Examines up to 19 positions on a cerd and “un-punches* those that
contain overpunch charscters.

Shorthand for the value extracted using the Cardio, Start, and
Length fields in the EVALDLSS table.

Converts a date of the form YDDD (e.g., 0352) to an ED! date
(e.g., 901201).

Converts a YMD date to an EDI date. In a YMD date, M is a one-
character month code and D is a one-digit day code.

Returns the dete for the first day of the month in EDI format
(e.g., 901201) when passed a year and month of the form YMM
(e.g., 012).

Returns the appropriste two-digit year (e.g., 90) when pessed a
one-digit year (e.g., 0).

Converts a YYNMMDD date to YJJJ formet.
Converts a YYMMM date to an EDI date (YYMMDD).
Converts a YYMMNDD string to an EDI date.

Returns the appropriate Julian date (e.g., 90352) when passed an
ED1 date (e.g., 901218).

Converts a YYMMDD date to & YMD date, where M is s one-character
wmonth code, and D is a one-digit day code; the flag parameter
affects the usage of the D code.

